عنوان
دست نوشته‌های مهندسی فرایند

مدرس:
محمدرضا ولی پور

اسفند 1398
مقدمه

طرح تحت بررسی قرار گرفته در دانشگاه خوزستان...

علی رغم اینکه در دانشگاه خوزستان و برای رسیدن به نتایج هنوز ب주세요...

هوشمندانه برای رسیدن به نتایج باید... در تشکیل...

کلیه اجرای بحران برای... در تیمار...

فصل اول تعریف

نحوه بررسی روانشناسی... از اینجا برای بررسی...

نحوه بررسی و نظرات روی...

کلیه اجرای برای... در انتخاب...

کلیه اجرای برای... در انتخاب...
PE + KE + IE + FE + ΔQ = PE₂ + KE₂ + IE₂ + FE₂ + ΔV₁g

PE = Potential energy = mgz

m = mass, g = gravity, z₁ = elevation

KE = Kinetic energy = \(\frac{1}{2}mv^2 \)

V = mass velocity

IE = Internal energy = \(\frac{1}{2}z₁ \)

FE = Flow energy = PV = PmV
\[\Delta Q = \text{net heat} = Q_A - Q_R \]

\[Q_A = \text{inlet heat} \]

\[Q_R = \text{outlet heat} \]

\[\Delta Q = m \cdot c_p \ left(T_2 - T_1 \right) \rightarrow c_n = \frac{c_p}{c_l} \]

\[\Delta W_{sf} = \text{net shaft work done by system} \]

\[= W_{by} - \left| W_{on} \right| \]

\[W_{by} = \text{work done by system} \]

\[W_{on} = \text{work done on the system} \]

\[\Delta W_{sf} = -\int V dP \] For steady state open system

\[m_1 g \cdot \frac{V_i^2}{2} + U_i + PV_i + \Delta Q = m_2 g + m_2 \frac{V_f^2}{2} + U_f + PV_f + \Delta W_{sf} \]
حل استادی

ارسال نمود

بحث نتایج

بررسی اینکه در اینجا با استفاده از فرمول‌های جبری، جفت‌های عددی حل شده‌اند.
For Ideal Gas:

\[C_p - C_v = R \]

\[C_p \frac{dv}{dT} = du \]

\[C_p dT = dh \]

For constant specific heats or for small changes in temperature:

\[u = c_v nRT \]

\[\Delta h = c_p \Delta T \]

\[\Delta W_p = 0 \]

\[P_2 - P_1 = 0 \]

\[K_{p_1} = K_{p_2} \]

\[\Delta Q = h_2 - h_1 \]

or

\[\Delta Q = h_2 - h_1 \]
در تمرین‌های دیگر گزارش نویسی:

\[\Delta Q = 0 \quad \text{adimensional} \]
\[P_{22} - P_{11} = \frac{\Delta W_{p}}{V_{2} - V_{1}} \]
\[KE_{2} - KE_{1} = 0 \]

\[\Delta W_{p} = H_{1} - H_{2} \quad \text{or} \quad \Delta W_{q} = H_{1} - h_{2} \]

\[V_{2} = V_{1} = V \quad \rightarrow \quad \Delta W_{q} = F_{E_{1}} - F_{E_{2}} = V(p_{1} - p_{2}) \]
\[\Delta W_{p} = \mu(p_{2} - p_{1}) = \int_{p_{1}}^{p_{2}} \mu dp \]

\[\Delta G = 0 \]
\[\Delta W_{q} = 0 \]
\[P_{22} - P_{11} = 0 \]
\[KE_{2} = KE_{1} \quad \text{c} = \frac{1}{2} \]
\[h_{1} = h_{2} + \frac{1}{2} V_{2}^{2} \]

\[V_{2} = \sqrt{2 \left(p_{1} - p_{2} \right)} \]
\[V_{2} = \sqrt{2 \left(p_{1} - p_{2} \right)} \]
\[\begin{align*}
\Delta Q &= 0 \\
\Delta W_{me} &= 0 \\
P_{i} - P_{o} &= 0 \\
K_{i} - K_{o} &= 0
\end{align*} \]

\[h_{i} = h_{2} \rightarrow h_{1} = h_{o} \]

(Throttling)

\[u_{i} + 0 = u_{o} + \Delta W_{me} \quad \Delta Q = \Delta W_{me} + \Delta W_{f} \]

\[\Delta W_{f} = \text{nonflow work} = \int P \, dV \]

"cycle"

\[\text{ مشکلات طراحی و صنایع پلاستیک از ایستادگی حرارتی در سقوط دستگاه} \]

\[\text{ مشکلات در سیستم نمونه و دیگر } \]

\[\text{ مشکلات در سیستم نمونه 1} \]

\[\text{ مشکلات در سیستم نمونه 2} \]
ماهیت دفع سیرو ایده‌گذاری کرده‌ایم.

خواهش داریم شما هم در این مورد کمک بکنید.

ما فکر می‌کنیم که به تنهایی نمی‌توانیم جواب بدهیم.

سپاسگزاری می‌کنیم.

کشورتیم می‌خواهیم...
It is impossible to construct a device which operates in a cycle and produces no effect other than transfer of heat from one body to another body.
نام: محمد علی‌اصفهانی

مراجعه در تاریخ ۱۳۹۴ تاریخ گزارش، مبلغ ۵۰۰ تومان لازم است.

۲) مبلغ ۱۰۰۰ تومان بپرداخت نمایید.

۳) موافقت با موضوع دادن به ازای نظریه شما می‌شود.

۴) بررسی موضوع کرده، ۳۰ بهمن می‌تواند بررسی دام نشود.

عمل‌های مربوط به:

۱) تعیین، ۲) شفت‌گیری ۳) نگهداری ۴) کنترل

امکانات:

۱) نورپردازی کافی که تأمین شود نورپردازی کافی نباشد.

۲) توجه داشته باشید که هم‌اکنون مناسب است که به عنوان نورپردازی کافی نباشد.

۳) کمک کنندگانی که می‌توانند به خوبی به نیازهای شما پاسخگو باشند.

۴) با در نظر گرفتن اینکه این نیاز به پاسخگویی به نیازهای شما است.
انشا خورشید:

1. بررسی بخش‌بندی محیط زیست
2. آمار و مکان‌سنجی اکتشافات
3. ارزیابی تاثیرات محیطی
4. طرح‌برداری و برنامه‌ریزی
5. بررسی و تحلیل رفتارهای جمعیتی
6. اندازه‌گیری و داده‌گیری
7. ارزیابی و بررسی نتایج
8. ارائه گزارش‌های پایانی

مزایای خورشید:

یک دسترسی به دانشگاه‌ها و مرکزهای تحقیقاتی
پیشرفت در بهبود شرایط زیستی
تغییرات محیطی را بررسی کنید
درمان و بهبود محیط زیست
تغییرات در محیط زیست

این متن را خوانید و ترجمه کنید.
دینامیک سالنی "Entropy"

در فیزیک، طرح مولفه‌های درونی می‌باشد. نهایت قابل‌تغییر، $\frac{dQ}{T}$، به‌این ترتیب است.

$$\Delta W_g = \int P_dV$$

کار اساسی برای بررسی سیستم‌های بخار و زمین و دریافت P.

$P \quad V$

$T \quad S$

$$\Delta H = \int T \, dS$$

معادله حرارت برای محاسبه حرارت مصرفی، دارای این شکل است.

کار ارسال حرارت به سیستم Q و قرار گرفتن در نقطه P.

$P \quad V$
در جدول زیر این مقادیر را جمع کنید:

<table>
<thead>
<tr>
<th>حروفهای A</th>
<th>حروفهای B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

در ریاضیات از توابع ترکیبی استفاده می‌شود.

در جدول زیر این مقادیر را جمع کنید:

<table>
<thead>
<tr>
<th>حروفهای A</th>
<th>حروفهای B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

در ریاضیات از توابع ترکیبی استفاده می‌شود.

در جدول زیر این مقادیر را جمع کنید:

<table>
<thead>
<tr>
<th>حروفهای A</th>
<th>حروفهای B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

در ریاضیات از توابع ترکیبی استفاده می‌شود.
اصمای تردد مبله

6. اصفهانی: تردد مکانیکی برای موقتی روش (مکانیکی) با استفاده از فرمول‌های آسان می‌تواند برای بررسی اثرات تردد مکانیکی استفاده شود.

\[T = \frac{H_1 - H_2}{H_1 - H_{TS}} = \frac{h_1 - h_2}{h_1 - h_{TS}} = \frac{W_T}{W_{TS}} \]

برای تردد مکانیکی، معادله فوق پیدا می‌شود.

![Diagram](image)
در ترکیب فیزیک دانشگاه ها واقع در خارجی می‌باشد. لازم است توجه کنیم که:

c_{p} = \frac{dH}{dT} \quad \text{For ideal gas}

\therefore H_{2} > H_{2} > H_{2s}

\begin{align*}
W_{S} &= H_{2s} - H_{1} \\
W_{S} &= H_{2} - H_{1} \\
W_{C} &= H_{C} - H_{1}
\end{align*}

\gamma_{C} = \frac{H_{2s} - H_{1}}{H_{2} - H_{1}} = \frac{W_{S}}{W_{C}}$

\text{The change of ENTROPY is a measure of the unavailable energy.}

\text{Entropy is a measure of disorder.}
۰ برای پیامد حرکتی نقله‌گذاری کردن پایه‌ها، باید به‌وجود آوردن پیامدهایی از جمله پیچیدن یا شکستن پایه‌ها را توجه نکنیم.
۰ نتیجه‌گیری‌های مهم از درون‌ساختار شده است. در‌نیاز به‌وجود گرفتن پایه‌ها.
۰ درجه حرارت در دو بخش رسانیده شده است. به‌لطف آمارهای ذی‌الصلة و سیاست‌های انتقالی باید در دو بخش شاید انتقال در دو بخش
۰ انتقال در دو بخش هر دو بخش رسانیده شده است. به‌لطف آمارهای ذی‌الصلة و سیاست‌های انتقالی باید در دو بخش شاید انتقال در دو بخش
۰ انتقال در دو بخش هر دو بخش رسانیده شده است. به‌لطف آمارهای ذی‌الصلة و سیاست‌های انتقالی باید در دو بخش شاید انتقال در دو بخش
بررسی انرژی محورهای استاندارد شرکت‌های نفتی و گازی در رابطه با

* "تغییرات در حالت‌های آب و پارامترانی باعث تغییرات در پارامترانی می‌شود" رانکینگ

@ - دargesیستگی روزگاری یا "تغییرات در حالت‌های آب و پارامترانی باعث تغییرات در پارامترانی می‌شود" رانکینگ

\[Q_{in} \rightarrow T_{out} \rightarrow W \]

\[P - S \]

\[T - S \]

\[P - S \]
<table>
<thead>
<tr>
<th>مصطلح</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Supervisor"</td>
<td>مشاوری و مهارت دریافت و بررسی مشکلات</td>
</tr>
</tbody>
</table>
\[q_A = \text{Heat added} = h_3 - h_4 \]

\[W_T = \text{Turbine work} = h_1 - h_2 \]

\[q_{rej} = h_1 - h_3 = \text{Heat rejected} \]

\[\text{Pump work} = W_p = h_4 - h_3 \]

\[\Delta W_{net} = W_T - W_p = (h_1 - h_2) - (h_4 - h_3) \]

\[\eta_T = \frac{\Delta W_{net}}{q_A} = \frac{(h_1 - h_2) - (h_4 - h_3)}{h_3 - h_4} \]

\[W_p = \rho_s (P_4 - P_3) \]

\[\text{Work ratio WR} = \frac{\Delta W_{net}}{W_T} = \frac{W_T - W_p}{W_T} \]
چچهدم درست نمایی می‌شود.

د: با درستی می‌باشد. این دایره‌ای از خطوط دارای یک نزدیکی دارد، بلعیده برای انتخاب ایننوشته‌ها از نظر کاربردی است. اگر صحیح کرده باشیم، باید از تفاوت روز و لحظه استفاده کنیم.

استحکام: کیفیت‌هایی را برای رشته‌های مختلف داشته‌ایم. در اینجا، استخوان را در هر یک از رشته‌ها داشته‌ایم.

در دو نگاه، با کمک تاکستان و سایر روش‌هایی که به گونه‌ای کاربردی استفاده می‌کنیم، باید روش‌هایی را بیابیم که به وسیله آنها می‌توانیم با استحکام و سرعت بالا، استحکام را افزایش دهیم.

اختصاص: با استفاده از نمونه‌های مختلف داشته‌ایم، نمی‌توانیم با استحکام و سرعت بالا، استحکام را افزایش دهیم.
احترامات من آقای دکتر نعمتالله نعیمی

(ِPinch point) نقطه ضعف

شما می‌توانید از درک دستی‌هایی از مسائلی درک نمایید. برای مثال، نقطه ضعف (Pinch point) به گونه‌ای آوازه‌ای است که در اینجا کاربردی می‌باشد.

اگر فشار در سیستم دارای بازیابی قابلیت بازیابی باشد و به‌طور گسترده‌ای در برخی از مواقع به‌طور خستگی گرفته، حس می‌کنید که فشار خوردگی آن می‌تواند باشد.

کمرنگی در لحظاتی که توانایی نسبی برای تغییر احتمالی داشته باشیم، منجر به شدت و سختی در دفعات به‌طور گسترده‌ای می‌گردد.

به‌طور کلی، لازم است، این‌طور که توانایی متوقف نیست، تغییراتی که در دفعات به‌طور گسترده‌ای می‌گردد، منجر به شدت و سختی در دفعات به‌طور گسترده‌ای می‌گردد.

به‌طور کلی، لازم است، این‌طور که توانایی متوقف نیست، تغییراتی که در دفعات به‌طور گسترده‌ای می‌گردد، منجر به شدت و سختی در دفعات به‌طور گسترده‌ای می‌گردد.

\[
\frac{dQ}{dT} = \frac{1}{\rho c_p} \cdot \frac{dQ}{dV}
\]
به منظور اولین بار تابع $f(x) = x^2$ را برای $x = 0$ تا $x = 1$ محاسبه کنید.

حال نشان دهید که در تابع $f(x) = x^2$ تعداد معکوس فاصله‌ی آزاد 0 به 1 است.

دریافت 0 و تابع $f(x) = x^2$ را محاسبه کنید.

بنابراین، تابع $f(x) = x^2$ در هر نقطه x تلخ است.

دریافت 0 و 1 آنها به ترتیب 0 و 1 را مشخص می‌کنند.

دریافت 0 و 1 آنها به ترتیب 0 و 1 را مشخص می‌کنند.

بنابراین، تابع $f(x) = x^2$ در هر نقطه x تلخ است.

به منظور اولین بار تابع $f(x) = x^2$ را برای $x = 0$ تا $x = 1$ محاسبه کنید.

حال نشان دهید که در تابع $f(x) = x^2$ تعداد معکوس فاصله‌ی آزاد 0 به 1 است.

دریافت 0 و تابع $f(x) = x^2$ را محاسبه کنید.

بنابراین، تابع $f(x) = x^2$ در هر نقطه x تلخ است.

دریافت 0 و 1 آنها به ترتیب 0 و 1 را مشخص می‌کنند.

دریافت 0 و 1 آنها به ترتیب 0 و 1 را مشخص می‌کنند.

بنابراین، تابع $f(x) = x^2$ در هر نقطه x تلخ است.

به منظور اولین بار تابع $f(x) = x^2$ را برای $x = 0$ تا $x = 1$ محاسبه کنید.

حال نشان دهید که در تابع $f(x) = x^2$ تعداد معکوس فاصله‌ی آزاد 0 به 1 است.

دریافت 0 و تابع $f(x) = x^2$ را محاسبه کنید.

بنابراین، تابع $f(x) = x^2$ در هر نقطه x تلخ است.

دریافت 0 و 1 آنها به ترتیب 0 و 1 را مشخص می‌کنند.

دریافت 0 و 1 آنها به ترتیب 0 و 1 را مشخص می‌کنند.

بنابراین، تابع $f(x) = x^2$ در هر نقطه x تلخ است.
در روبروی نمودار، نقاط a و b مورد نظر هستند.

نقطه a به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

در حالت a، دما به‌خوبی به دما (T) در دما (s) مشخص است.

نقطه b به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه c به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

یک ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه d به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه e به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه f به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه g به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه h به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه i به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه j به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه k به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه l به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه m به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه n به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه o به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه p به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه q به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه r به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه s به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه t به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه u به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه v به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه w به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه x به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه y به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

نقطه z به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.

در همه روابط اینکه a به‌ویژه برای محاسبه ضریب تغییر در دما (T) در دما (s) مشخص است.
Sample: Consider three Rankine steam cycles, all exhausting to 1 psia.

Cycle A operates at 2500 psia and 1000°F.

Cycle B operates with 2500 psia saturated steam.

Cycle C operates with superheated steam at a temperature equal to that of cycle B, but with a pressure of 2000 psia.

Find: the efficiencies and exhaust steam qualities of these three cycles.

Given: three ideal Rankine cycle A: \(P = 2500 \text{ psia}, \text{ } T = 1000°F \)

Cycle B: \(P = 2500 \text{ psia}, \text{ } T = T_{\text{sat}} \)

Cycle C: \(P = 2000 \text{ psia}, \text{ } T = T_{\text{sat}} \text{ (Ps) (P – 2500 psia)} \)

Find: \(\eta, \text{ } W_r, \text{ } W_p, \text{ } W_r \)
eq: Thermodynamics first law:

\[\Delta h = h_4 - h_3 \]

\[W = h_4 - h_1 \]

\[q = h_4 - h_{in} \]

Inlet Steam Conditions:

\[h_{in} = 1457.5 \text{ Btu/lbm} \]

\[s_{in} = 1.5260 \text{ Btu/lbm}^2 \]

\[s_2 = s_1 \rightarrow \text{Turbine is isentropic} \]

\[s_e = (s_f + x_2 s_f) \frac{T_e}{T_f} \]

\[T_e = 1.326 = 0.1326 + x_2 (1.8955) \]

\[x_2 = 0.7533 \]

\[h_2 = (h_f + x_2 h_g) \frac{T_e}{T_f} = 852.5 \text{ Btu/lbm} \]

\[h_3 = 697.3 \text{ Btu/lbm} \]

\[h_4 = h_3 + h_p \]

\[N_P = h_4 - h_3 + \frac{\rho_v (P_4 - P_3)}{\gamma} \]

\[h_p = \frac{0.0614 (2500 - 1) \times 144}{778.16} \]

\[= 7.96 \text{ Btu/lbm} \]

Turbine Work:

\[W_T = h_4 - h_1 = 1457.5 - 852.5 = 605.0 \text{ Btu/lbm} \]

\[\Delta W_{Net} = W_T - N_P = 537.52 \text{ Btu/lbm} \]

\[q_A = h_4 - h_{in} = 1457.5 - 1457.5 = 0 \text{ Btu/lbm} \]

\[q_R = h_3 - h_4 = 697.3 - 1457.5 = -757.7 \text{ Btu/lbm} \]

\[LR = \frac{\Delta W_{Net}}{1320.1} = 0.5375 \text{ Btu/lbm} \]
<table>
<thead>
<tr>
<th>جدول هرمرکز دیجیتال در میزان</th>
<th>محاسبه</th>
<th>تعیین</th>
<th>محاسبه</th>
<th>محاسبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_T = (h_1 - h_2) + (h_3 - h_4)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_{P1} = h_1 - h_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta W_{net} = (h_1 - h_2) + (h_3 - h_4) - (h_6 - h_5)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q_A = (h_1 - h_6) + (h_3 - h_2)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \omega_T = \frac{\Delta W_{net}}{q_A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
مقدار مطلوب $P_{\text{ت}}$ محور ازمان $R_{\text{ت}}$ سال مورد مطالعه

در خصوص نمودار به راست، مقدار T در فاصله 2 تا 6 می‌باشد.

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،

$\frac{P_{\text{ت}}}{P_{1}}$ به عنوان فاکتور استاندارد در نظر گرفته می‌شود.

کلین به دور از فاصله 2 مقدار کر از مدت نیز،
Given: A Rankine cycle Point 4, \(P_4 = 17.5 \text{ MPa} \), \(T_4 = 550^\circ\text{C} \)

Reheat at 2, \(P_2 = 3.5 \text{ MPa} \), \(T_2 = 550^\circ\text{C} \)

Condensing pressure \(P_4 = 7.5 \text{ MPa} \).

Find: the efficiency and quality of motive.

Solution: For a internal reversible cycle we have.
\[
\begin{align*}
\text{\(P_1\)} &= 175\,\text{MPa} \\
\text{\(T_1\)} &= 550\,\text{°C} \\
\text{\(S_1\)} &= 6.423 \\
\text{\(S_2\)} &= 2.5 \\
\text{\(S_3\)} &= 2 > S_2 \\
\text{\(P_2\)} &= 3.5\,\text{MPa} \\
\text{\(T_2\)} &= 225.54\,\text{°C} \\
\text{\(h_2\)} &= 2264.87\,\text{kJ/kg} \\
\text{By interpolation,} \\
\text{\(T_3\)} &= 550\,\text{°C} \\
\text{\(k_3\)} &= 2.5064.65\,\text{kJ/kg} \\
\text{\(S_3\)} &= 7.2085 > S_4 \\
\text{\(S_4\)} &= 6.72 \\
\text{\(R_4\)} &= \frac{S_4 - S_f}{S_{f_4}} = 0.8754 \\
\text{\(x_4\)} &= \frac{S_4 - S_f}{S_{f_4}} = 0.8754 \\
\text{\(h_4\)} &= h_f + h_g x_4 = 2275\,\text{kJ/kg} \\
\text{\(P_i\)} &= \text{\(P\)} \\
\text{\(P_3\)} &= \text{\(P_4\)} \\
\text{\(h_6\)} &= 1864.2\,\text{kJ/kg} \\
W_T &= 456.53 + 1280.65 = 1737.18\,\text{kJ/kg} \\
\Delta W_{\text{net}} &= 1736.18 - 17.63 = 1728.55\,\text{kJ/kg} \\
q_A &= 3234.92 + 599.78 = 3834.70\,\text{kJ/kg} \\
\text{\(c_{\text{th}}\)} &= \frac{1728.55}{3834.70} = 0.4507\,\text{°C/kg}
\end{align*}
\]
در سوال ۵ محاسبه سطح جهت در ابعادی چهار ضلعی کدام است؟

پاسخ:

1. انتخاب (ب) صحیح است.
2. هر یک از انتخابات (د) و (ه) ناکافی هستند.
3. هر یک از انتخابات (م) و (ن) آزمایشی هستند.
4. هر یک از انتخابات (ب) و (ه) صحیح هستند.
5. هر یک از انتخابات (ب) و (ه) آزمایشی هستند.

* هر یک از انتخابات (ب) و (ه) صحیح هستند.
* هر یک از انتخابات (ب) و (ه) آزمایشی هستند.

در پاسخ (ب) و (ه) صحیح هستند. در سوال ۵ محاسبه سطح جهت در ابعادی چهار ضلعی کدام است؟

پاسخ:

1. (ب) صحیح است.
2. هر یک از انتخابات (د) و (ه) ناکافی هستند.
3. هر یک از انتخابات (م) و (ن) آزمایشی هستند.
4. هر یک از انتخابات (ب) و (ه) صحیح هستند.
5. هر یک از انتخابات (ب) و (ه) آزمایشی هستند.

* هر یک از انتخابات (ب) و (ه) صحیح هستند.
* هر یک از انتخابات (ب) و (ه) آزمایشی هستند.

در پاسخ (ب) و (ه) صحیح هستند.
در معادلات حاصل از این روش، زمانی که جایگاه بالینی برای جریان شرکت کرده باشد، می‌تواند باشد.

لحظه دریافت پیام دریافت شده مدتی به صورت مدتی دو بار درست می‌شود.

روشی که برای کنترل سیستم با استفاده از جریان شرکت کرده و در مدت محدود صورت می‌گیرد.

در زمان و در مدتی بسیار کوتاه، می‌تواند در زمان نهایی به صورت مدتی استفاده شود.

همه کارهای باید در مدتی انجام شوند.

دستورالعمل دومی برای اینکه جایگاه بالینی برای جریان شرکت کرده نباشد.

نوشته شده‌است که حالت‌های موجود فاصله اینکه جریان شرکت کرده استفاده شود.

* ایندکس‌های دومی اجرا نمی‌شود به صورت بالینی برای جریان شرکت کرده.

** ایندکس‌های دومی اجرا نمی‌شود به صورت بالینی برای جریان شرکت کرده.
کمک‌گر سیاست‌گذار (کمیسیون اجرایی)

گروه‌های سیاوشی در کنار یکدیگر، برای پیاده‌سازی برنامه‌های جدید، در پایه‌های کشور و جهانی، به کار می‌رود.

۱. با استفاده از منابع‌های مختلف، مرحله‌ها را بررسی و پیاده‌سازی کنید.
۲. برنامه‌ریزی کافی برای رسیدن به منابع مالی و غیرمالی را انجام دهید.
۳. همه اعضای گروه را به‌صورت مداوم به روزرسانی کنید.

پس از روی کار آمدن، سبک تفکر به زبان لاتین:

۱. فرزند با ابزار سیاست‌گذاری
۲. فرزند با تحلیل بخش برنده
۳. فرزند با تحلیل بخش برنده

با تشکر,
[نام نویسنده]
مساحت 7.64 متر از ارتیقه، قرار داشتن بر 3 سطح، که درهم کشیده شده و کمک به توزیع انرژی می‌کند.

1. تولید انرژی با استفاده از 8 سطح ماده سرد و 8 سطح ماده خنک
2. درجه حرارت برای نیازهای 1.5 بیلیون.
3. بازیافت و جمع‌آوری 2 پرده.

4. پروپان به قیمت 2.14 دلار بر سیلیکات درجه حرارت در مصرف بستری شده و به هنگام ساختمان به هنگام ساختمان.

5. رانترف برای نیازهای 1.5 بیلیون.

6. درجه حرارت برای نیازهای 1.5 بیلیون.

* بار رمزنگاری
* لحاظ کنید که نمودار کارایی محاسبه شده.

* در نظر گرفته برای بار نصب پنل‌های شش دیاه و جمع‌آوری مقدار

امکان هزینه مطالعه تحقیق (1/2) در دو روز پس از پرداخت

\[m_1 = m_2 = 1 \text{ kg} \]

جمع گرتهای شش‌گیره پنل‌های شش دیاه

\[m_2 = 2 \text{ kg} \]

جمع گرتهای شش‌گیره پنل‌های شش دیاه

\[m_3 = 3 \text{ kg} \]
Heat balance:

\[\dot{m}_2 (h_2 - h_3) = \frac{\dot{W}_T}{T} \frac{(h_3 - h_6)}{(1 - \dot{m}_2)} \]

\[\dot{m}_3 (h_3 - h_6) = (1 - \dot{m}_2) \frac{(h_4 - h_6)}{6} \]

\[q_A = (h_1 - h_4) = \text{heat added} \]

\[W_T = (h_1 - h_2) + (1 - \dot{m}_2) (h_2 - h_3) + (1 - \dot{m}_2 - \dot{m}_3) (h_3 - h_6) \]

\[\sum |W| = (1 - \dot{m}_2 - \dot{m}_3) (h_5 - h_3) + (1 - \dot{m}_2) (h_4 - h_7) + (h_6 - h_3) \]

\[q_R = (1 - \dot{m}_2 - \dot{m}_3) (h_5 - h_6) = \text{heat rejected} \]

\[\Delta W_{net} = W_T - 1440 \]

\[\frac{\dot{Q}}{q_A} = \frac{\Delta W_{net}}{q_A} \]

\[\frac{q}{W_R} = \frac{\Delta W_{net}}{W_T} \]

\[\sum |W| = (1 - \dot{m}_2 - \dot{m}_3) \frac{v_5 (P_5 - P_3)}{\gamma} + (1 - \dot{m}_2) \frac{v_4 (P_4 - P_3)}{\gamma} + \frac{v_3 (P_3 - P_2)}{\gamma} \]
Example: An ideal Rankine cycle operates between 2500 psia and 1000°F at throttle and 1 psia in the Condenser. One open lift FIII is placed at 200 psia. Assuming 1 lbm/h flow at turbine throttle and no flow pressure drops, calculate the mass flow rate in the heater and the pertinent parameters for the cycle and compare them with those of the cycle in Example 2-1, which has the same condition except that no feedwater heater was used.

Given: An ideal Rankine cycle
- $P_1 = 2500$ psia, $T_1 = 1000°F$
- $P_3 = P_4 = 1$ psia
- $P_2 = 200$ psia.

Find: $m_{2}, T_2, h_2, h_f, h_f, T_A, T_R$.

647. First-thermodynamics laws:

\[
\begin{align*}
\left[P_1 = 2500 \text{ psia} \right] & \rightarrow h_1 = 1457.5 \text{ Btu/lbm} \quad s_1 = 1.5269 \text{ Btu/°F lbm} \\
\left[T_1 = 1000 °F \right] & \rightarrow s_1 = \text{constant} \\
\left[P_2 = 200 \text{ psia} \right] & \rightarrow s_2 = s_1 = 1.5269 = s_f + x_2 \left(1.0016 \right) \quad s = s_f + 1.0016 p_b \\
\end{align*}
\]

\[x_2 = 0.3915 \]
\(h_2 = 355.5 + 0.3215 (342.8) = 1122.7 \text{ BTU/lbm} \)

\(h_3 = 59.73 + 0.7555 (1036.1) = 852.1 \text{ BTU/lbm} \)

\(h_4 = h_3 - (7 \times 514) = 69.73 \text{ BTU/lbm} \)

\(V_4 = V_3 = 0.016136 \text{ ft}^3/\text{lbm} \)

\(h_6 = 355.5 \text{ BTU/lbm} \)

\(h_7 = h_6 + 0.01839 \times \frac{(25 \times 10^6)}{721.16} = 363.3 \text{ BTU/lbm} \)

\(m_2 (h_2 - h_6) = (1 - m_2) (h_6 - h_5) \)

\(m_2 = 0.2564 \)
\[W_f = (h_1 - h_2) + (1 - \frac{m_2}{m}) (h_5 - h_4) \]
\[= 520.34 \text{ ftm} \]
\[|W_p| = (l - \frac{m_2}{m}) (h_5 - h_4) \]
\[= 82.37 \text{ ftm} \]
\[D_{\text{Net}} = W_f - |W_p| = 512.07 \text{ ftm} \]
\[Q_h = l - h_7 = 1457.5 - 363.3 = 1094.2 \text{ ft}^3/\text{min} \]
\[(Q_h) \times (1 - \frac{m_2}{m}) (h_5 - h_4) = 582.1 \text{ ft}^3/\text{min} \]
\[L_h = \frac{D_{\text{Net}}}{Q_h} = \frac{512.07}{1094.2} = 0.468 \text{ ft} \]
\[\frac{L}{W_f} = \frac{D_{\text{Net}}}{W_f} = 0.384 \]

\[W_f = 604.98 \]
\[W_p = 7.96 \]
\[Q_h = 1380.31 \text{ ft}^3/\text{min} \]
\[L = 43.29 \]