CHAPTER 3
EXACT ONE-DIMENSIONAL SOLUTIONS

3.1 Introduction
o Temperature solution depends on velocity

o Velocity is governed by non-linear Navier-Stokes eqs.

o Exact solution are based on simplifications governing
equations

3.2 Simplification of the Governing Equations

Simplifying assumptions: yT
(1) Laminar flow {
(2) Parallel streamlines .
= 3.1
v=0 S Fig. 3.1

(3.1) into continuity for 2-D, constant density fluid:

a—" =0, everywhere 3.2)
ox
2
67‘2’ -0 (33)
ox
(3) Negligible axial variation of temperature
al =(, everywhere G4
ox
(3.4) is valid under certain conditions. It follows that
2
6772" =0 @3.5)
ox

(4) Constant properties: velocity and temperature fields are
uncoupled (Table 2.1, white box)

TABLE 2.1
q No. of
Basic law Equations Unknowns

Energy 1 T|u|v |w P |4 |k
Continuity 1 ulv | w P
Momentum 3 uiv | w|plipliu
Equation of State 1 T P |P
Viscosity relation 1 T )4 u

1=u(p,T)

Conductivity relation k
k=k(p,T) T ’

Similar results are obtained for certain rotating flows.




Fig. 3.2: T r

o Shaft rotates inside sleeve 9
e Streamlines are concentric circles \

e Axisymmetric conditions, no axial

variations

or

—=0 3.6

20 (3.6)

Fig. 3.2
2

673 =0 @37
00

3.3 Exact Solutions

3.3.1 Couette Flow
¢ Flow between parallel plate

e Motion due to pressure drop and/or moving plate

e Channel is infinitely long

Example 3.1: Couette Flow with Dissipation

y 7, U
e Very large parallel e — >
plates H
e Incompressible fluid ¥ %

Upper plate at 7, moves with velocity U,

Insulate lower plate

Account for dissipation

Laminar flow, no gravity, no pressure drop
e Determine temperature distribution

(1) Observations

o Plate sets fluid in motion

¢ No axial variation of flow

e Incompressible fluid

e Cartesian geometry

(2) Problem Definition.
Determine the velocity and temperature distribution
(3) Solution Plan

¢ Find flow field, apply continuity and Navier-Stokes
equations

o Apply the energy to determine the temperature distribution
(4) Plan Execution

(i) Assumptions

o Steady state

e Laminar flow

o Constant properties

o Infinite plates

e No end effects

e Uniform pressure

e No gravity




(ii) Analysis
Start with the energy equation

or, ot ot or)_
pep ot ox oy 0z

2 2 2
k[ar aT LT ] .1om)

0.
@ is dissipation x

o= (2 f%)i =T
(o) 2y ]

61 + i +== 6w (3.17)
ox oy 0Oz ;

Need u, vand w. Apply continuity and the Navier-Stokes
equations
Continuity
6£+u6£++v6£+w6£+p Ou av aw =0
ot ox 6y 0z 6x 6y 67, (2.2b)
Constant density
3 _3p _dp_op_
ot ox oy oz

(@)

Infinite plates
2 = o —w=0 (b)
ox oz
(a) and (b) into (2.2b)
il =0 ©
Integrate (c) &
v=f(x) @

f(x)is “constant” of integration

Apply the no-slip condition

v(x,0)=0 (e)
(d) and (e) give
f(x)=0
Substitute into (d)
v=0 ®

.. Streamlines are parallel
To determine z we apply the Navier-Stokes eqs.

Ou Ou Ou Ou
pl=—+u—+v—+w
ot ox Oy 3

—a—p+ @+62"+62 (2.10%)
Pex= o T H o PR :

)




Simplify:
Steady state —=0

No gravity g.,=0
Negligible axial pressure variation
o
ox
(b) and (f)-(i) into (2.10x) gives
du

dy2

=0

0
Solution to (j) is

u=Cyy+C,
Boundary conditions

u(0)=0 and u(H)=U,

(®

(h)

@

[0}

(k)

(U]

k) and (I) give
(k) and () g €1, 4 €,=0
u_Jy
U, H
Dissipation: (b) and (f) into (2.17)
2
o
o
U2

=

(m) into (k)

Use (3.8) into (n)

Steady state: 97 /0t =0

Infinite plates at uniform temperature:
or_oT_
ot

(m)

(3.8)

(n)

(0)

Use above, (b), (f) and (o) into energy (2.10b)
2 2
k d—f +u U"z =

dy H

2
T=—2’;;]I”z Y +Cy+C,
_de(O)
dy

B.C. and solution (q) give

C;=0 and C,=T, +

-1, _1f,_»*
pu? 20 H?

k

0

Integrate

B.C.
=0 and T(H)=T,

HU,
2%

(s) into (q)

®)

@

r)

)

(3.9)




Fourier’s law gives heat flux at y = H

dT(H)
q"(H)y=—k——=
dx
(3.9) into the above
2
q"(H)= % (3.10)
(iii) Checking

Dimensional check: Each term in (3.8) and (3.9) is
dimensionless. Units of (3.10) is W/m?

Differential equation check: Velocity solution (3.8) satisfies
(j) and temperature solution (3.9) satisfies (p)

Boundary conditions check: Solution (3.8) satisfies B.C. (1),
temperature solution (3.9) satisfies B.C. (r)

Limiting check: (i) Stationary upper plate: no fluid motion.
Set U,=0in (3.8) gives u(y) =0
(ii) Stationary upper plate: no dissipation, uniform
temperature 7}, no surface flux. Set U/, =0 in (0), (3.9) and
(3.10) gives @ =0, 7(») =T, and g"(H) =0
(iii) Inviscid fluid: no dissipation, uniform temperature 7,
Set g4 =0 in (3.9) gives 7(y) = T,
(iv) Global conservation of energy: Frictional energy is
conducted through moving plate:

W = Friction work by plate

q"(H) = Heat conducted through plate

W =t(H)U, ()
where

7(H) = shearing stress

T(H) = ”%}I){) (u)
(3.8) into (u) v
(H)= ,u;" )
(v) and (t) 2
w=HUs ™
H

(w) agrees with (3.10)
(4) Comments

o Infinite plate is key assumption. This eliminates x as a
variable

e Maximum temperature: at y =0 Set y =0 in (3.9)

uU;
2%

T(0)-T, =




3.3.2 Hagen-Poiseuille Flow
eProblems associated with axial flow in channels

Motion due to pressure drop

Channel is infinitely long

Example 3.2: Flow in a Tube at Uniform

Surface Temperature

Incompressible r / I
fluid flows in a
long tube o——z

Motion is due to

pressure gradient Op / 0z

o Surface temperature 7,

e Account for dissipation

e Assuming axisymmetric laminar flow

o Neglecting gravity and end effects
e Determine:
|a] Temperature distribution
[b] Surface heat flux
ld Nusselt number based on [T(0)—T, |

(1) Observations

Motion is due to pressure drop
Long tube: No axial variation
Incompressible fluid

Heat generation due to dissipation

Dissipated energy is removed by conduction at the
surface

Heat flux and heat transfer coefficient depend on
temperature distribution

Temperature distribution depends on the velocity
distribution

Cylindrical geometry

(2) Problem Definition.
Determine the velocity and temperature distribution.
(3) Solution Plan

o Apply continuity and Navier-Stokes to determine flow field

Apply energy equation to determine temperature
distribution

Fourier’s law surface heat flux

Equation (1.10) gives the heat transfer coefficient.

(4) Plan Execution




(i) Assumptions
o Steady state

e Laminar flow

o Axisymmetric flow

o Constant properties

e No end effects

e Uniform surface temperature

o Negligible gravitational effect

(ii) Analysis

[a] Start with energy equation (2.24)

oT oT  vgoT oT
pcp(5+ v,5+7£+ vz6—zj=
k[li(, al)+ 1T +‘32l] +ud 224

ror\ or) 1230 87*

where , 5 5
¢=2(av’J +2 16‘)—‘9+v—’ +2 o, +
or rof r oz
) 1ov,\2 (18v, vy (v, ov,)
Vo Yo  JOWr) (|2 Vo [Pr Pz 335
roe oz oz or
e NeedV,, VgandV,

o r ro8
¢ Flow field: use continuity and Navier-Stokes eqs.

op 10 10 0
——+——(prv,)+—(ovg)+—(pv.)=0 2.4
o P g (era)t o (o) @9
Constant p a a s s
op_9p_0P _9P _, @
ot or 00 oz
Axisymmetric flow
vg= o = (b)
06 N
Long tube, no end effects
2 =0 (©)
(a)-(c) into (2.4) 0z
i(rv,)= 0 @
dr
Integrate
m, = f(z) (e)
f(z) is “constant” of integration. Use the no-slip B.C.
v(ry,2) =0 ®
(e) and (f) give
f(@)=0
Substitute into (e)
v,=0 (©®

.. Streamlines are parallel

v Determine : Navier-Stokes eq. in z-direction




v, Lo e ®e,, P e)_
or r 00 oz O

t
o, J18( 0v; +laz"z +62"z
PE: oz Ararar 2 06 9%

Simplify (2.11z)
Steady state: ﬁ =0 (h)
ot
No gravity: g, =g,=0 @
(b), (c) and (g)-(i) into (2.112)
_Q’_,_’uli ) @11
0z rdr\ dr
.. V. depends on ronly, rewrite (3.11)
op 1d( dv,
T=p——|r—=|=gr V)
0z " dr[ dr £
Integrate
p=g(r)z+C, k)

Apply Navier-Stokes in r~direction

2
p[v 6v,+v96v,_v9 sy 6v,+6v,]=
r

or r 06 r ‘oz ot

or or\ror rt 68% r

2 2
pgr_@+#[2(12(,vr)j+iﬂ_1%+%]
4

(b), (2) and (i) into (2.11r) @110
a—p =0 o
or

Integrate

r=f(2) (m)
f(z) = “constant” of integration
o Equate two solutions for p: (k) and (m):
p=g(r)z+C, = f(z) ®
an==C )
C'= constant. Use (0) into (j)
g—p=y1£(rﬁj=C ®)
Integrate < rdr dr
d
v, _1dp e+ G
. . dr 2udz
integrate again
. - Ldp. +Clnr+C, @
4udz
TwoB.C.on: v,
dv_(0)
ﬁ=0, (r)=0 )

(q) and (r) give Ciand C,




dp,s

¢G=0 , G= o
4udz
Substitute into (q)
v, =Ld—p(rz—r,,z) 3.12)
4udz
For long tube at uniform temperature:
2
ar_orT_, ®
oz o7t
(b), (¢), (g), (h) and (s) into energy (2.24)
1i(rﬂ)+ @=0 ®
rdr\ dr
(b), (¢) and (g) into (2.25) 2
(4=
“Lar
Substitute velocity solution (3.11) into the above
2
1d
D= [2— d—p) r? (u)
(u) in (t) and rearrange Haz
2
d( dT 1 (d
)l e
Integrate d 4 H\dz
1 (dp)’
T=——- 22| *1Cimr+C, ®)
64ku\ dz
Need two B.C.
L(0):0 and T(r,)=T, W)
dr
(v) and (w) give 2
C,=0 , C,=T,+— 1 [4P] 4
64ku\ dz
Substitute into (v)
r,j' dp z P
T=T,+—|=£|[1- (3.142)
64ku\ dz rd B
In dimensionless form:
T-T, 4
— 5= [1 - "4] (3.14b)
r,:‘ dp LA
64ku\ dz
[b] Use Fourier’s aT(r,)
4"r,) =~k
(3.14) into above
v} (d p :
q"(ro) =_° | £ 3.15)
16u\ dz
[c¢] Nusselt number: WD 2
Nu=22 2200 ®
k k
(1.10) gives h B P drT(r,) o

(3-14a) into (y) (T@O)-T,] dr




h=—
(2) into (x) To
Nu=4
(iii) Checking
Dimensional check:

e Each term in (3.12) has units of velocity

e Each term in (3.14a) has units of temperature

e Each term in (3.15) has units of W/m?

Differential equation check: Velocity solution (3.12)

@)

(3.16)

satisfies (p) and temperature solution (3.14) satisfies (3.13)

Boundary conditions check: Velocity solution (3.12) satisfies
B.C. (r) and temperature solution (3.14) satisfies B.C. (w)

Limiting check:

(i) Uniform pressure (dp/dz = 0): No fluid motion.

Set dp/dz =0 in (3.12) gives v, =0

(ii) Uniform pressure ( dp/ dz = 0): No fluid motion, no

dissipation, no surface flux. Set dp/dz = 0 in (3.15) gives

q"(r,)=0
(iii) Global conservation of energy:

‘ Heat leaving tube = Pump work ‘

Pump work Wfor a tube of length L
W=(p-p )0
P1 = upstream pressure
P, = downstream pressure

0

flow rate

Q= 27rj0r" v rdr

@1

(3.12) into the above, integrate
- 7w d
Q=-T Py
8udz

_ _Irr: dp

8u ?z(pl —-P2)
Work per unit area "
w" u

- 2zr,L

(z-1) and (z-2)

(z-3) into the above
W'=-—2_

16u dz L

However (pr—p2)_ dp

L &

Combine with (z-4 3 2
(z-4) —— [ipJ
16u\dz

"03 dp (p1—p2)

(z-2)

(z-3)

(z-4)

10



This agrees with (3.15)

(5) Comments
o Key simplification: long tube with end effects. This is
same as assuming parallel streamlines

e According to (3.14), maximum temperature is at center r
=0

e The Nusselt number is constant independent of Reynolds
and Prandtl numbers

Example 3.3: Lubrication Oil Temperature in Rotating
Shaft

Lubrication oil fills the clearance between a shaft
and its housing. The radius of the shaft is r; and
its angular velocity is w. The housing radius is
1o and its temperature is T, Assuming laminar
flow and taking into consideration dissipation,
determine the maximum temperature rise in the
oil and the heat generated due to dissipation?

3.3.3 Rotating Flow
Example 3.3: Lubrication Oil Temperature
in Rotating Shaft

o Lubrication oil between shaft o
and housing \V

o Angular velocity is @ A

e Assuming laminar flow

e Account for dissipation

e Determine the maximum temperature

rise in oil
(1) Observations
© Fluid motion is due to shaft rotation

e Housing is stationary

11



e No axial variation in velocity and temperature

No variation with angular position
Constant p
Frictional heat is removed at housing

e No heat is conducted through shaft
e Maximum temperature at shaft
e Cylindrical geometry
(2) Problem Definition.
Determine the velocity and temperature distribution of oil

(3) Solution Plan
e Apply continuity and Navier-Stokes eqs. to determine flow
field

o Use energy equation to determine temperature field

e Fourier’s law at the housing gives frictional heat

(4) Plan Execution
(i) Assumptions
Steady state
Laminar flow
Axisymmetric flow
Constant properties
No end effects
Uniform surface temperature
Negligible gravitational effect
(ii) Analysis
e Energy equation governs temperature
per( s, L2020, BT
o "or rod ‘oz

2 2
P lﬁ(ral)JriﬂJrﬂ +ud 2.24)
ror\ or) r280% 7%

where o\ 5 2 ov )2
o=2[2r) 42 1ﬂ+v—' 2| Pl 4
or rold r 174
vy vy 10v,\ (10v, vy (ov, ov.)
[J_iJr,irj |2 0| 4 e T2 225)
or r r oo roe oz oz or

Need flow field v, ,vgand v

e Apply continuity and Navier-Stokes to determine flow

field
op 10 10 0
B +—— +— =0 24
ot rar(prv') raa(”v”) az(pVZ) @
Constant p a a s s
op_9p_0P _9P _, (@)
ot or 00 oz
Axisymmetric flow P
Z =0 )
06 N

12



Long shaft: P

v,=—=0 (©)
(a)-(c) into (2.4) 0z
d
— =0 (O]
L v,
Integrate
rv,=C ©
Apply B.C. to determine C
v,(r,)=0 ®
(e) and (f) give C=0
Use (e)
v,=0 @

.". Streamlines are concentric circles

Apply the Navier-Stokes to determine vy

R O _r by —O4—F
ér r 00 r oz ot

2 2
Pgo —1al+ﬂ|:2(li(rV9)J+ia rg 200, 0 v":|
r ror

p(v o Yoo Ve vy 6v9)=

00 "or r? 80* 200  ?
2.11
For steady state: 2 @14
== (h)
ot
Neglect gravity, use (b),(c), (g), (h) into (2.119)
d(1d
—| =—(@vy) |=0 3.17)
dr (r dr ( 0))
Integrate
C G .
vg = 5 r+—= @
B.C. are r
vo(r)=or; ve(r,)=0 )
(j) gives C;and C,
2@r,»2 (or,»2 r,,2
Cl =— ) ) C2 = 3 3 &)
ry =1 o — 1
(k) into (i) )
ve(r) _ (r, /1) (5 1) =(r /1) o8
or; (r,,/r,-)z—l

Simplify energy equation (2.24) and dissipation function
(2.25). Use(b), (¢), (g), (h)

1d( dT
k=——|r— |+ u®=0 (
rdr( dr) # ®
and @=(dv70_vl]2
dr r

(3.18) into above

13



wr? 1

or;

D= 7’2 3 (m)
1=(r/r,)" | r

Combine (m) and (I)

d( ar\_ u[ 2017 T1
=8 == | = (3.19)
dr\ dr k{1-(r/r) ]|

Integrate(3.19) twice
2 2
T(r)=-% _2ori Licimr+c ()
2 2 3 4
k|1 /r)* | r
Need two B.C.

T(,)=T, and

arw) _, ©
dr

(n) and (o) give C3 and Cy

) 2
Com_ | 200 | 1
37 2 2

2k [1=(r; /1) |

2
20r}
Cy=T,+£ | 20 iz+iz1nr,,
4k | 1-(r; /1) ry oK

Substitute into (o)

2
T(r)=T, +£ [2‘(’7"2} [(r,» 1)) = (r; 17)% + 2In(r,, /r)]

e[ 1= 175) (3.20a)
or T(r)-T,
C = (1 /1,) = (r; 1)} + 2n(r, /1)
20r;
£ — (3.20D)
4k | 1-(r; /1)
Maximum temperature at ¥ = r;
2
T4)-T, =2 [L'z} [1+(r,- I1,) +2In(r, /17)
4k (1-(r;Ir,) @21
Use Fourier’s law to determine frictional energy per
unit length q'(r,) N
dT
() =2,k T
(3.20a) in above dr
: (@r,)’
q(r,)=4ru e (322)
1- (r, /rn)
(iii) Checking

e Each term in solutions (3.18) and (3.20b) is dimensionless

¢ Equation (p) has the correct units of W/m
Differential equation check:

e Velocity solution (3.18) satisfies (3.17) and temperature
solution (3.20) satisfies (3.19)
Boundary conditions check:

o Velocity solution (3.18) satisfies B.C. (j) and temperature
solution (3.20) satisfies B.C. (o)

14



Limiting check:

o Stationary shaft: No fluid motion. Set @ =0in (3.18) gives
vg=0

o Stationary shaft: No dissipation, no heat loss Set @ =0in
(3.22) gives ¢'(r,) =0

e Global conservation of energy:

‘Heat leaving housing = shaft work

Shaft work per unit length

W'=2zrt(r;)or; ®)
7(r;) = shearing stress

dvy v

(1) = ﬂ[ o 7”] @
(3.18) into the above ) =i

T(ri ) = _2 ('.‘)/"’)72/‘0)'.’ (r)
(r,/r;)" =1 .

Combining (p) and (r) ,

’ (@r;)
W'=4gpy ————

# 1-(r; /1,)* ©

This is identical to surface heat transfer (3.22)

(5) Comments

o The key simplifying assumption is axisymmetry

o Temperature rise due to frictional heat increase as
the clearance s decreased

e Single governing parameter: (¥;/,)

Example 3.4: A hollow shaft of outer radius, r, rotates
with constant angular velocity, w , while
immersed in an infinite fluid at uniform
temperature T,,, Taking into
consideration dissipation, determine
surface heat flux. Assume incompressible
laminar flow and neglect end effects.

Given
© Fluid motion is due to shaft rotation

e Axial variation in velocity and temperature
are negligible for a very long shaft.

* Velocity, pressure and temperature do not
vary with angular position.

15



o The fluid is incompressible (constant density)

e The determination of surface temperature and
heat flux requires the determination of
temperature distribution in the rotating fluid.

o Use cylindrical coordinates
(2) Problem Definition(Find).

Determine velocity & temperature distribution in rotating flui

(3) Solution Plan(Equation)
e Apply continuity and Navier-Stokes eqs. to determine flow
field

o Use energy equation to determine temperature field

(4) Plan Execution

e Steady state (i) Assumptions

e Laminar flow

e Axisymmetric flow

¢ Constant properties(density, viscosity and conductivity),
e No end effects

e no angular and axial variation of velocity, pressure and
temperature

o Negligible gravitational effect . .
. . glgAnaly.sm
e Temperature distribution is obtained by solving the energy
equation. Thus we begin the analysis with the energy equation.

c (‘LTH or veoT | ‘LTJ_
P e e T a0 e

- ==+
rorl ar ) 2007 o2

2 2
k[‘ﬁ( a—T)Jr 1o71 ﬂ]+y¢ @24

where o\ 5 2 ov )2
o=2[2r) 42 1ﬂ+v—' 2| Pl 4
or rold r 174
vy vy 10v,\ (10v, vy (ov, ov.)
[J_iJr,irj |2 0| 4 e T2 225)
or r r oo roe oz oz or

Need flow field v, ,vgand v,
e Apply continuity and Navier-Stokes to determine flow

field
op 10 10 0
B +—— +— =0 24
ot rar(prv') raa(”v”) az(pVZ) @
Constant p a a s s
op_9p_0P _9P _, (@)
ot or 00 oz
Axisymmetric flow P
Z =0 )
06 N
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Long shaft: P

v,=—=0 (©)
(a)-(c) into (2.4) 0z
d
— =0 (O]
L v,
Integrate
rv,=C ©
Apply B.C. (No-slip) to determine C
V() =0 ®
(e) and (f) give C=0
Use (e)
v,=0 @

.". Streamlines are concentric circles

Apply the Navier-Stokes to determine vy

"or r 00 r for ot

2 2
Pgo —1al+ﬂ|:2(li(rV9)J+ia rg 200, 0 v":|
r ror

p(v g Yo Vv, aLaJraLe):

00 "or r? 80* 200  ?
2.11
For steady state: 2 @14
= (h)
ot
Neglect gravity, use (b),(c), (g), (h) into (2.119)
d(1d
—| =—(@vy) |=0 3.17)
dr (r dr (e ))
Integrate
G .G .
vg = 5 r+—= @
B.C. are r
v )=or, V,(0)=0 0}
(j) gives C;and C,
C =0 C,=owr ®
(k) into (i) _ r,
V(1) =10 - @18)

Simplify energy equation (2.24) and dissipation function
(2.25). Use(b), (¢), (g), (h)

1d( dT
k=——|r— |+ u®=0 (
rdr( dr) # ®
and @=(dv70_vl]2
dr r

(3.18) into above
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27, (m)

O=40"
P
Combi d(
ombine (m) and (1) a rdl o e
dr\ dr kor 3.19)
Integrate(3.19) twice

1) =-Eor Licnrec,
k e ;

Need two B.C.
T(oo) = T; and r—oo T islimited (0)

(n) and (o) give C3 and Cy

C3:O C4:TOO

Substitute into (o) u 7
T(r)y=T,- —a)z% (3:202)
kK r
Surface temperature at ;- — r
_ H 2 >
T(ro)_Too_;a) 7, @321)
Use Fourier’s law to determine frictional energy per
unit length q'(r,,) “
dT
¢'r,) =—2r e L)
(3.20a) in above dr
q'(r) = -4z p(or)’ @2

(iii) Checking
e Each term in solutions (3.18) and (3.20b) is dimensionless

¢ Equation (p) has the correct units of W/m
Differential equation check:

e Velocity solution (3.18) satisfies (3.17) and temperature
solution (3.20) satisfies (3.19)
Boundary conditions check:

o Velocity solution (3.18) satisfies B.C. (j) and temperature
solution (3.20) satisfies B.C. (o)
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Limiting check:
o Stationary shaft: No fluid motion. Set @ =0in (3.18) gives
vg=0
o Stationary shaft: No dissipation, no heat loss Set @ =0in
(3.22) gives ¢'(r,) =0
¢ Global conservation of energy: gyrface heat transfer rate must
equal to work required to overco

friction at the shaft’s surface
Shaft work per unit length

r_
W'=2rrz(r,)or, ®
7(r,) = shearing stress
(r) = [L’V, 7ﬁ}
M drrlr=r @

(3.18) into the above

wr)=2pa

Combining (p) and (r)
W'=—4zx u(or,)’ 5)

This is identical to surface heat transfer (3.22)

(5) Comments

o The key simplifying assumption is axisymmetry.
This resulted in concentric streamlines with
vanishing normal velocity and angular changes.

* Surface temperature is lowest in the entire region.
* Heat flow direct ion is negative.

* This problem was solved by specifying two
conditions at infinity. If surface temperature is
specified instead of fluid temperature at infinity,
the solution determines T at infinity.
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