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CHAPTER 3

EXACT ONE-DIMENSIONAL SOLUTIONS
3.1 Introduction
 Temperature solution depends on velocity 

 Velocity is governed by non-linear Navier-Stokes eqs.

 Exact solution are based on simplifications governing 
equations 

3.2 Simplification of the Governing Equations
Simplifying assumptions:

(1) Laminar flow 

(3.1)
(2) Parallel streamlines

0v

1

(3.1) into continuity for 2-D, constant density fluid:
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(3) Negligible axial variation of temperature

(3.4) is valid under certain conditions. It follows that

(4) Constant properties: velocity and temperature fields are 
uncoupled (Table 2.1, white box)
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Conductivity relation
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State of Equation

Similar results are obtained for certain rotating flows.  
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Fig. 3.2: 
 Shaft rotates inside sleeve 

 Streamlines are concentric circles

 Axisymmetric conditions, no axial 
variations



3.3 Exact Solutions
3.3.1 Couette Flow
 Flow between parallel plate 

 Motion due to pressure drop and/or moving plate

 Channel is infinitely long
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Example 3.1: Couette Flow with Dissipation

 Incompressible fluid 

 Upper plate at To moves with velocity Uo

 Insulate lower plate 

 Account for dissipation 

 Laminar flow, no gravity, no pressure drop

 Determine temperature distribution 

(1) Observations
 Plate sets fluid in motion 

 No axial variation of flow 

 Incompressible fluid 

 Cartesian geometry 
5

 Very large parallel 
plates

(2) Problem Definition.
Determine the velocity and temperature distribution

(3) Solution Plan
 Find flow field, apply continuity and Navier-Stokes 

equations

 Apply the energy to determine the temperature distribution

(4)  Plan Execution
(i) Assumptions
 Steady state

 Laminar flow

 Constant properties

 Infinite plates

 No end effects

 Uniform pressure 

 No gravity
6
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(ii)  Analysis
Start with the energy equation

 is dissipation
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Need u, v and w. Apply continuity and the Navier-Stokes 
equations 
Continuity 

Constant density

Infinite plates

(a) and (b) into (2.2b)

Integrate (c)
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)(xf is “constant” of integration

Apply the no-slip condition 

(d) and (e) give
0)( xf

Substitute into (d)

 Streamlines are parallel 

To determine u we apply the Navier-Stokes eqs.

0)0,( xv (e)

0v (f)
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Simplify: 

Steady state

No gravity

Negligible axial pressure variation

(b) and (f)-(i) into (2.10x) gives

Solution to (j) is 

Boundary conditions
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(k) and (I) give

(m) into (k)

Dissipation: (b) and (f) into (2.17)

Use (3.8) into (n)

0/  tTSteady state: 
Infinite plates at uniform temperature:
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Use above, (b), (f) and (o) into energy (2.10b) 

Integrate

B.C. 

B.C. and solution (q) give

(s) into (q)
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Fourier’s law gives heat flux at y = H

dx
HdT

kHq
)(

)( 

(3.9) into the above

(iii) Checking

Dimensional check: Each term in (3.8) and (3.9) is 
dimensionless. Units of (3.10) is W/m2

Differential equation check: Velocity solution (3.8) satisfies 
(j) and temperature solution (3.9) satisfies (p)

Boundary conditions check: Solution (3.8) satisfies B.C. (l), 
temperature solution (3.9) satisfies B.C. (r)
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(ii) Stationary upper plate:  no dissipation, uniform 
temperature To, no surface flux.   Set Uo = 0 in (o), (3.9) and 
(3.10)  gives             T(y) = To and ,0 0)(  Hq

(iii) Inviscid fluid: no dissipation, uniform temperature To.  
Set              in (3.9) gives T(y) = To0

Limiting check: (i) Stationary upper plate: no  fluid motion. 
Set Uo = 0 in (3.8) gives u(y) = 0

(iv) Global conservation of energy: Frictional energy is 
conducted through moving plate:

W = Friction work by plate 

)(Hq  = Heat conducted through plate

where
oUHW )( (t)
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)(H = shearing stress 

(3.8) into (u)

(v) and (t)

(w) agrees with  (3.10)

(4) Comments
 Infinite plate is key assumption.  This eliminates x as a 

variable 

 Maximum temperature: at y = 0 Set y = 0  in (3.9) 
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Example 3.2: Flow in a Tube at Uniform 
Surface Temperature

Problems associated with axial flow in channels 

 Motion due to pressure drop 

 Channel is infinitely long

3.3.2 Hagen-Poiseuille Flow

 Incompressible 
fluid flows in a 
long tube

zp  /
 Motion is due to 

pressure gradient
 Surface temperature To

 Account for dissipation
 Assuming axisymmetric laminar flow 16

 Neglecting gravity and end effects
 Determine:

[a] Temperature distribution

[b]  Surface heat flux 

oTT )0([c]  Nusselt number based on  [                   ]

(1) Observations
 Motion is due to pressure drop 

 Long tube: No axial variation 

 Incompressible fluid 

 Heat generation due to dissipation 

 Dissipated energy is removed by conduction at the 
surface

 Heat flux and heat transfer coefficient depend on 
temperature distribution

17

 Temperature distribution depends on the velocity 
distribution

 Cylindrical geometry

(2) Problem Definition.

Determine the velocity and temperature distribution.

(3) Solution Plan

 Apply continuity and Navier-Stokes to determine flow field

 Apply energy equation to determine temperature 
distribution

 Fourier’s law surface heat flux

 Equation (1.10) gives the heat transfer coefficient.

(4)  Plan Execution
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(i) Assumptions
 Steady state

 Laminar flow

 Axisymmetric flow

 Constant properties 

 No end effects

 Uniform surface temperature 

 Negligible gravitational effect

(ii)  Analysis
[a] Start with energy equation (2.24)
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(2.25)

 Need     ,       andrv v zv
 Flow field: use continuity and Navier-Stokes eqs.
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(2.4)

Constant 

Axisymmetric flow
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Long tube, no end effects

(a)-(c) into (2.4)

Integrate

)(zf is “constant” of integration. Use the no-slip B.C.

(e) and (f) give

Substitute into (e)

 Streamlines are parallel 
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dr

d
v (d)

)(zfr vr (e)

0),( zrov (f)

0)( zf

0rv (g)

zv Determine : Navier-Stokes eq. in z-direction
21



8






























































2

2

2

2

2

11

zrr
r

rrz
p

g

tzrr

zzz
z

zz
z

zz
r

vvv

vv
v

vv
v





 v

(2.11z)Simplify

Steady state:

No gravity:

(b), (c) and (g)-(i) into (2.11z)

 zv depends on r only, rewrite (3.11) 

0


t

(h)

0 zr gg (i)

0
1 











dr

d
r

dr
d

rz
p zv (3.11)

)(
1

rg
dr

d
r

dr
d

rz
p z 









 v

 (j)

22

Integrate

Apply Navier-Stokes in r-direction 
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(2.11r)(b), (g) and (i) into (2.11r)

Integrate
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 Equate two solutions for p: (k) and (m):
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C = constant.  Use (o) into (j)  
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Substitute into (q)

For long tube at uniform temperature: 

(b), (c), (g), (h) and (s) into energy (2.24)

(b), (c) and (g) into (2.25) 2
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(u) in (t) and rearrange

Integrate

Need two B.C.

(v) and (w) give 
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In dimensionless form: 

[b] Use Fourier’s 

dr

rdT
krq o
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(3.14) into above

[c] Nusselt number:

(1.10) gives h

(3.14a) into (y) 
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(z) into (x)

(iii) Checking

Dimensional check: 

 Each term in (3.12) has units of velocity

 Each term in (3.14a) has units of temperature 

 Each term in (3.15) has units of  W/m2

Differential equation check: Velocity solution (3.12) 
satisfies (p) and temperature solution (3.14) satisfies (3.13)

Boundary conditions check: Velocity solution (3.12) satisfies 
B.C. (r) and temperature solution (3.14) satisfies B.C. (w)

Limiting check: 

or

k
h

2
 (z)

4Nu (3.16)
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(i) Uniform pressure (                  ): No fluid motion.  
Set                   in (3.12) gives

0/ dzdp
0/ dzdp 0zv

(ii) Uniform pressure (                   ): No fluid motion, no 
dissipation, no surface flux. Set                   in (3.15) gives0/ dzdp

0/ dzdp

0)(  orq
(iii) Global conservation of energy: 

work Pump  tube leavingHeat 

Pump work W for a tube of length L

1p =  upstream pressure 

2p =  downstream pressure

=  flow rate

(z-1)

29

(3.12) into the above, integrate 

(z-1) and (z-2) 

W Work per unit area  
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This agrees with (3.15)

(5) Comments 
 Key simplification: long tube with end effects. This is 

same as  assuming parallel streamlines 

 According to (3.14), maximum temperature is  at center r 
= 0

 The Nusselt number is constant independent of Reynolds 
and Prandtl numbers 

31

3.3.3 Rotating Flow
Example 3.3: Lubrication Oil Temperature 

in Rotating Shaft

 Lubrication oil between shaft 
and housing

 Angular velocity is

 Assuming laminar flow 

 Account for dissipation

 Determine the maximum temperature 
rise in oil

(1) Observations
 Fluid motion is due to shaft rotation 

 Housing is stationary
32
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 No axial variation in velocity and temperature 

 No variation with angular position 
 Constant

 Frictional heat is removed at housing

 No heat is conducted through shaft 

 Maximum temperature at shaft

 Cylindrical geometry

(2) Problem Definition.

Determine the velocity and temperature distribution of oil 

(3) Solution Plan
 Apply continuity and Navier-Stokes eqs. to determine flow 

field

 Use energy equation to determine temperature field

 Fourier’s law at the housing gives frictional heat
33

(4) Plan Execution
(i) Assumptions
 Steady state
 Laminar flow
 Axisymmetric flow
 Constant properties 
 No end effects
 Uniform surface temperature 
 Negligible gravitational effect
(ii) Analysis 
 Energy equation governs temperature
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(2.25)

Need flow field      ,      and rv v zv

 Apply continuity and Navier-Stokes to determine flow 
field
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(2.4)

Constant 

Axisymmetric flow
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Long shaft: 

(a)-(c) into (2.4)

Integrate

  0rr
dr

d
v (d)

(c)0




zzv

(e)Cr rv

Apply B.C. to determine C

(e) and (f) give C = 0

Use  (e)

Streamlines are concentric circles

vApply the Navier-Stokes to determine  

0)( or rv (f)

0rv (g)
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For steady state:
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(h)

Neglect gravity, use (b),(c), (g), (h) into (2.11   ) 

Integrate

B.C. are 
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1C 2C(j) gives      and 

(k) into (i) 

Simplify energy equation (2.24) and dissipation function 
(2.25). Use(b), (c), (g), (h) 

and 2
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Combine (m) and (l)

Integrate(3.19) twice

Need two B.C.

3C 4C(n) and (o) give       and 
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Use Fourier’s law to determine frictional energy per 
unit length  
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(3.20a) in above

(iii) Checking

 Each term in solutions (3.18) and (3.20b) is dimensionless

 Equation (p) has the correct units of  W/m
Differential equation check: 

 Velocity solution (3.18) satisfies (3.17) and temperature 
solution (3.20) satisfies (3.19)

Boundary conditions check: 

 Velocity solution (3.18) satisfies B.C. (j) and temperature 
solution (3.20) satisfies B.C. (o)
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Limiting check: 
 Stationary shaft: No fluid motion.  Set           in (3.18) gives0

0v
 Stationary shaft: No dissipation, no heat loss Set           in 

(3.22) gives
0

0)(  orq
 Global conservation of energy:

workshaft   housing leavingHeat 

Shaft work per unit length

)( ir = shearing stress 

(3.18) into the above 
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Combining (p) and (r) 

This is identical to surface heat transfer (3.22)

(5) Comments
 The key simplifying assumption is axisymmetry

 Temperature rise due to frictional heat increase as 
the clearance s decreased 

)/( oi rr Single governing parameter: 
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Given
 Fluid motion is due to shaft rotation 

 Axial variation in velocity and temperature 
are negligible for a very long shaft. 

• Velocity, pressure and temperature do not 
vary with angular position. 
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 The fluid is incompressible (constant density) 

 The determination of surface temperature and 
heat flux requires the determination of 
temperature distribution in the rotating fluid. 

 Use cylindrical coordinates

(2) Problem Definition(Find).

Determine velocity & temperature distribution in rotating fluid.

(3) Solution Plan(Equation)
 Apply continuity and Navier-Stokes eqs. to determine flow 

field

 Use energy equation to determine temperature field

33

(4) Plan Execution
(i) Assumptions Steady state

 Laminar flow
 Axisymmetric flow
 Constant properties(density, viscosity and conductivity),  
 No end effects
 no angular and axial variation of velocity, pressure and 
temperature  
 Negligible gravitational effect

(ii) Analysis 
 Temperature distribution is obtained by solving the energy 
equation. Thus we begin the analysis with the energy equation.
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(2.25)

Need flow field      ,      and rv v zv

 Apply continuity and Navier-Stokes to determine flow 
field
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(2.4)

Constant 
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Long shaft: 

(a)-(c) into (2.4)

Integrate

  0rr
dr

d
v (d)

(c)0




zzv

(e)Cr rv

Apply B.C. (No-slip) to determine C

(e) and (f) give C = 0

Use  (e)

Streamlines are concentric circles

vApply the Navier-Stokes to determine  

0)( or rv (f)

0rv (g)
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For steady state:
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Neglect gravity, use (b),(c), (g), (h) into (2.11   ) 

Integrate
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1C 2C(j) gives      and 

(k) into (i) 

Simplify energy equation (2.24) and dissipation function 
(2.25). Use(b), (c), (g), (h) 

and 2
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Combine (m) and (l)

Integrate(3.19) twice

Need two B.C.

3C 4C(n) and (o) give       and 
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Substitute into (o)

Surface temperature at  
orr 

)( orq
Use Fourier’s law to determine frictional energy per 
unit length  
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TrT o  (3.20a)

(3.21)
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2)( 
(3.20a) in above

(iii) Checking

 Each term in solutions (3.18) and (3.20b) is dimensionless

 Equation (p) has the correct units of  W/m
Differential equation check: 

 Velocity solution (3.18) satisfies (3.17) and temperature 
solution (3.20) satisfies (3.19)

Boundary conditions check: 

 Velocity solution (3.18) satisfies B.C. (j) and temperature 
solution (3.20) satisfies B.C. (o)

2)(4)( oo rrq  (3.22)
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Limiting check: 
 Stationary shaft: No fluid motion.  Set           in (3.18) gives0

0v
 Stationary shaft: No dissipation, no heat loss Set           in 

(3.22) gives
0

0)(  orq
 Global conservation of energy:

Shaft work per unit length

)( or = shearing stress 

(3.18) into the above 

ooo rrrW  )(2 (p)

orrrdr

d
ro 



   vv)( (q)

 2)( or
(r)
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Surface heat transfer rate must 
equal to work required to overcome 
friction at the shaft’s surface

Combining (p) and (r) 

This is identical to surface heat transfer (3.22)

(5) Comments
 The key simplifying assumption is axisymmetry. 

This resulted in concentric streamlines with 
vanishing normal velocity and angular changes. 

• Surface temperature is lowest in the entire region.

• Heat flow direct ion is negative.

• This problem was solved by specifying two 
conditions at infinity. If surface temperature is 
specified instead of fluid temperature at infinity, 
the solution determines T at infinity.

 Temperature rise due to frictional heat increase as 

2)(4 orW  (s)
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