

uncoupled (Table 2.1, white box)

• Cartesian geometry

(2) Problem Definition.

Determine the velocity and temperature distribution

(3) Solution Plan

- Find flow field, apply continuity and Navier-Stokes
- equations
- Apply the energy to determine the temperature distribution
- (4) Plan Execution
 - (i) Assumptions
 - Steady state
 - Laminar flow
 - Constant properties
 - Infinite plates
 - No end effects
 - Uniform pressure
 - No gravity

Need <i>u</i> , <i>v</i> and <i>w</i> . Apply continuity and the Navier-Stokes equations	
Continuity	
$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} + \rho \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right] = 0$	(2.2b)
Constant density	` ´
$\frac{\partial \rho}{\partial t} = \frac{\partial \rho}{\partial x} = \frac{\partial \rho}{\partial y} = \frac{\partial \rho}{\partial z} = 0$	(a)
$\frac{\partial}{\partial x} = \frac{\partial}{\partial z} = w = 0$	(b)
(a) and (b) into (2.2b)	
$\frac{\partial v}{\partial y} = 0$ Integrate (c)	(c)
v = f(x)	(d) *

f(x) is "constant" of integration	
Apply the no-slip condition	
v(x,0)=0	(e)
(d) and (e) give $f(x) = 0$	
Substitute into (d) $v = 0$	(f)
∴ Streamlines are parallel	
To determine <i>u</i> we apply the Navier-Stokes eqs.	
$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) =$	
$\rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$	(2.10x)

Simplify:		
Steady state	$\frac{\partial u}{\partial t} = 0$	(g)
No gravity	$g_x = 0$	(h)
Negligible axial press	sure variation	
	$\frac{\partial p}{\partial x} = 0$	(i)
(b) and (f)-(i) into (2.10)x) gives	
Colution to (i) is	$\frac{d^2 u}{dy^2} = 0$	(j)
Solution to (j) is	u = C u + C	(1-)
Boundary conditions	$u = c_1 y + c_2$	(K)
<i>u</i> (0)	$= 0$ and $u(H) = U_o$	(I) ₁₀

(k) and (I) give

$$C_{1} = U_{o} \text{ and } C_{2} = 0 \quad (m)$$
(m) into (k)

$$\frac{u}{U_{o}} = \frac{y}{H} \quad (3.8)$$
Dissipation: (b) and (f) into (2.17)

$$\boldsymbol{\varPhi} = \left(\frac{\partial u}{\partial y}\right)^{2} \quad (n)$$
Use (3.8) into (n)

$$\boldsymbol{\varPhi} = \frac{U_{o}^{2}}{H^{2}} \quad (o)$$
Steady state: $\partial T / \partial t = 0$
Infinite plates at uniform temperature:

$$\frac{\partial T}{\partial x} = \frac{\partial^{2} T}{\partial x^{2}} = 0$$

Use above, (b), (f) and (o) into energy (2.10b)

$$k \frac{d^{2}T}{dy^{2}} + \mu \frac{U_{o}^{2}}{H^{2}} = 0 \qquad (p)$$
Integrate
$$T = -\frac{\mu U_{o}^{2}}{2kH^{2}}y^{2} + C_{3}y + C_{4} \qquad (q)$$
B.C.
$$-k \frac{dT(0)}{dy} = 0 \quad \text{and} \quad T(H) = T_{o} \qquad (r)$$
B.C. and solution (q) give
$$C_{3} = 0 \quad \text{and} \quad C_{4} = T_{o} + \frac{\mu U_{o}^{2}}{2k} \qquad (s)$$
(s) into (q)
$$\frac{T - T_{o}}{\mu U_{o}^{2}} = \frac{1}{2} \left(1 - \frac{y^{2}}{H^{2}} \right) \qquad (3.9)$$

Fourier's law gives heat flux at y = H $q''(H) = -k \frac{dT(H)}{dT(H)}$

$$k \frac{dT(H)}{dx}$$

(3.9) into the above

$$q''(H) = \frac{\mu U_o^2}{H}$$

(3.10)

(t)

(iii) Checking

Dimensional check: Each term in (3.8) and (3.9) is dimensionless. Units of (3.10) is W/m²

Differential equation check: Velocity solution (3.8) satisfies (j) and temperature solution (3.9) satisfies (p)

Boundary conditions check: Solution (3.8) satisfies B.C. (l), temperature solution (3.9) satisfies B.C. (r)

Limiting check: (i) Stationary upper plate: no fluid motion. Set $U_0 = 0$ in (3.8) gives u(y) = 0(ii) Stationary upper plate: no dissipation, uniform temperature T_o , no surface flux. Set $U_o = 0$ in (o), (3.9) and (3.10) gives $\phi = 0$, $T(y) = T_0$ and q''(H) = 0(iii) Inviscid fluid: no dissipation, uniform temperature T_{a} Set $\mu = 0$ in (3.9) gives $T(y) = T_0$ (iv) Global conservation of energy: Frictional energy is

conducted through moving plate:

W = Friction work by plate

q''(H) = Heat conducted through plate

 $W = \tau(H)U_o$

where

$$\tau(H) = \text{shearing stress}$$

$$\tau(H) = \mu \frac{du(H)}{dy} \qquad (u)$$
(3.8) into (u)
$$\tau(H) = \mu \frac{U_o}{H} \qquad (v)$$
(v) and (t)
$$W = \frac{\mu U_o^2}{H} \qquad (w)$$
(w) agrees with (3.10)
(4) Comments
• Infinite plate is key assumption. This eliminates x as a

variable

• Maximum temperature: at
$$y = 0$$
 Set $y = 0$ in (3.9)

$$T(0) - T_o = \frac{\mu U_o^2}{2k}$$

Neglecting gravity and end effects

- Determine: [a] Temperature distribution [b] Surface heat flux
- [c] Nusselt number based on $[T(0) T_{\rho}]$
- (1) Observations
- Motion is due to pressure drop
- Long tube: No axial variation
- Incompressible fluid
- Heat generation due to dissipation
- Dissipated energy is removed by conduction at the surface
- Heat flux and heat transfer coefficient depend on temperature distribution
- Temperature distribution depends on the velocity distribution
- Cylindrical geometry

(2) Problem Definition.

Determine the velocity and temperature distribution.

(3) Solution Plan

- Apply continuity and Navier-Stokes to determine flow field
- Apply energy equation to determine temperature distribution
- Fourier's law surface heat flux
- Equation (1.10) gives the heat transfer coefficient.
- (4) Plan Execution

where

$$\boldsymbol{\varPhi} = 2\left(\frac{\partial v_r}{\partial r}\right)^2 + 2\left(\frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r}{r}\right)^2 + 2\left(\frac{\partial v_z}{\partial z}\right)^2 + \left(\frac{\partial v_{\theta}}{\partial r} - \frac{v_{\theta}}{r} + \frac{1}{r}\frac{\partial v_r}{\partial \theta}\right)^2 + \left(\frac{1}{r}\frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z}\right)^2 + \left(\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r}\right)^2 (2.25)$$
• Need v_r , v_{θ} and v_z
• Flow field: use continuity and Navier-Stokes eqs.
 $\frac{\partial \rho}{\partial t} + \frac{1}{r}\frac{\partial}{\partial r}(\rho r v_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(\rho v_{\theta}) + \frac{\partial}{\partial z}(\rho v_z) = 0$ (2.4)
Constant ρ
 $\frac{\partial \rho}{\partial t} = \frac{\partial \rho}{\partial r} = \frac{\partial \rho}{\partial \theta} = \frac{\partial \rho}{\partial z} = 0$ (a)
Axisymmetric flow
 $v_{\theta} = \frac{\partial}{\partial \theta} = 0$ (b)

Long tube, no end effec	ets	
(a)-(c) into (2.4)	$\frac{\partial}{\partial z} = 0$	(c)
	$\frac{d}{dr}(rv_r) = 0$	(d)
Integrate		
8	$rv_r = f(z)$	(e)
f(z) is "constant" of in	tegration. Use the no-slip B.C.	
	$v(r_o, z) = 0$	(f)
(e) and (f) give		
	f(z) = 0	
Substitute into (e)		
	$v_r = 0$	(g)
∴ Streamlines are para	llel	
<i>v_z</i> Determine : Navier-S	Stokes eq. in <i>z</i> -direction	
		21

$$\rho \left(v_r \frac{\partial v_z}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial t} \right) = \rho g_z - \frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$$
Simplify
(2.11z)
Steady state:
$$\frac{\partial}{\partial t} = 0 \qquad (h)$$
No gravity:
$$g_r = g_z = 0 \qquad (i)$$
(b), (c) and (g)-(i) into (2.11z)
$$-\frac{\partial p}{\partial z} + \mu \frac{1}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right) = 0 \qquad (3.11)$$

$$\frac{\partial p}{\partial z} = \mu \frac{1}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right) = g(r) \qquad (i)$$

$$C_{1} = 0 \quad , \quad C_{2} = \frac{1}{4\mu} \frac{dp}{dz} r_{o}^{2}$$
Substitute into (q)

$$v_{z} = \frac{1}{4\mu} \frac{dp}{dz} (r^{2} - r_{o}^{2}) \quad (3.12)$$
For long tube at uniform temperature:

$$\frac{\partial T}{\partial z} = \frac{\partial^{2} T}{\partial z^{2}} = 0 \quad (s)$$
(b), (c), (g), (h) and (s) into energy (2.24)

$$k \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \mu \Phi = 0 \quad (t)$$
(b), (c) and (g) into (2.25)

$$\Phi = \left(\frac{dv_{z}}{dr} \right)^{2}$$
Substitute velocity solution (3.11) into the above

$$\boldsymbol{\varPhi} = \left(\frac{1}{2\mu}\frac{dp}{dz}\right)^2 r^2 \qquad (u)$$
(u) in (t) and rearrange
$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{1}{4k\mu}\left(\frac{dp}{dz}\right)^2 r^3 \qquad (3.13)$$
Integrate
$$T = -\frac{1}{64k\mu}\left(\frac{dp}{dz}\right)^2 r^4 + C_3 \ln r + C_4 \qquad (v)$$
Need two B.C.
$$\frac{dT(0)}{dr} = 0 \quad and \quad T(r_o) = T_o \qquad (w)$$
(v) and (w) give
$$C_3 = 0 \quad , \quad C_4 = T_o + \frac{1}{64k\mu}\left(\frac{dp}{dz}\right)^2 r_o^4$$
Substitute into (v)
$$T = T_o + \frac{r_o^4}{64k\mu}\left(\frac{dp}{dz}\right)^2 \left(1 - \frac{r^4}{r_o^4}\right) \qquad (3.14a)$$

In dimensionless form:

$$\frac{T-T_o}{\frac{r_o^4}{64k\mu} \left(\frac{dp}{dz}\right)^2} = \left(1 - \frac{r^4}{r_o^4}\right) \quad (3.14b)$$
[b] Use Fourier's

$$q''(r_o) = -k \frac{dT(r_o)}{dr}$$
(3.14) into above

$$q''(r_o) = \frac{r_o^3}{16\mu} \left(\frac{dp}{dz}\right)^2 \quad (3.15)$$
[c] Nusselt number:

$$Nu = \frac{hD}{k} = \frac{2hr_o}{k} \quad (x)$$
(1.10) gives h

$$h = -\frac{k}{[T(0) - T_o]} \frac{dT(r_o)}{dr} \quad (y)$$

	$h = \frac{2k}{k}$	(z)
(z) into (x)	r _o	
(iii) Checking	Nu = 4	(3.16)
Dimensional check:		
• Each term in (3	3.12) has units of velocity	
• Each term in (3	3.14a) has units of tempera	ature
• Each term in (3	8.15) has units of W/m ²	
<i>Differential equatio</i> satisfies (p) and tem	on check: Velocity solution operature solution (3.14) s	(3.12) atisfies (3.13)
<i>Boundary condition</i> B.C. (r) and temper	<i>as check</i> : Velocity solution eature solution (3.14) satist	(3.12) satisfies fies B.C. (w)
Limiting check:		

This agrees with (3.15)

(5) Comments

- Key simplification: long tube with end effects. This is same as assuming parallel streamlines
- According to (3.14), maximum temperature is at center r =0
- The Nusselt number is constant independent of Reynolds and Prandtl numbers

Example 3.3: Lubrication Oil Temperature in Rotating Shaft

Lubrication oil fills the clearance between a shaft and its housing. The radius of the shaft is r_i and its angular velocity is ω . The housing radius is r_0 and its temperature is T_o Assuming laminar flow and taking into consideration dissipation, determine the maximum temperature rise in the oil and the heat generated due to dissipation?

0

3.3.3 Rotating Flow Example 3.3: Lubrication Oil Temperature in Rotating Shaft

- Lubrication oil between shaft and housing
- Angular velocity is *a*
- Assuming laminar flow
- Account for dissipation
- Determine the maximum temperature rise in oil
- (1) Observations
 - Fluid motion is due to shaft rotation
 - Housing is stationary

- No axial variation in velocity and temperature
- No variation with angular position
- Constant ρ
- Frictional heat is removed at housing
- No heat is conducted through shaft
- Maximum temperature at shaft
- Cylindrical geometry

(2) Problem Definition.

Determine the velocity and temperature distribution of oil (3) Solution Plan

- Apply continuity and Navier-Stokes eqs. to determine flow field
- Use energy equation to determine temperature field
- Fourier's law at the housing gives frictional heat

where

$$\boldsymbol{\varPhi} = 2\left(\frac{\partial v_r}{\partial r}\right)^2 + 2\left(\frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r}{r}\right)^2 + 2\left(\frac{\partial v_z}{\partial z}\right)^2 + \left(\frac{\partial v_r}{\partial z} + \frac{\partial v_{\theta}}{\partial r}\right)^2 + \left(\frac{1}{r}\frac{\partial v_r}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z}\right)^2 + \left(\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r}\right)^2 (2.25)$$
Need flow field v_r , v_{θ} and v_z
• Apply continuity and Navier-Stokes to determine flow field
 $\frac{\partial \rho}{\partial t} + \frac{1}{r}\frac{\partial}{\partial r}(\rho r v_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(\rho v_{\theta}) + \frac{\partial}{\partial z}(\rho v_z) = 0$ (2.4)
Constant ρ
 $\frac{\partial \rho}{\partial t} = \frac{\partial \rho}{\partial r} = \frac{\partial \rho}{\partial \theta} = \frac{\partial \rho}{\partial z} = 0$ (a)
Axisymmetric flow
 $\frac{\partial}{\partial \theta} = 0$ (b)

Long shaft: ∂	
$v_z = \frac{\partial z}{\partial z} = 0$	(c)
$\frac{d}{d}(rv_{r}) = 0$	(d)
dr	
$r v_r = C$	(e)
Apply B.C. to determine <i>C</i>	
$v_r(r_o) = 0$	(f)
(e) and (f) give $C=0$	
Use (e)	
$v_r = 0$	(g)
Streamlines are concentric circles	
Apply the Navier-Stokes to determine v_{θ}	
	36

$$\rho \left(v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} - \frac{v_r v_{\theta}}{r} + v_z \frac{\partial v_{\theta}}{\partial z} + \frac{\partial v_{\theta}}{\partial t} \right) = \rho g_{\theta} - \frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_{\theta}) \right) + \frac{1}{r^2} \frac{\partial^2 v_{\theta}}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_{\theta}}{\partial z^2} \right]$$
For steady state:

$$\frac{\partial}{\partial t} = 0 \qquad (b)$$
Neglect gravity, use (b),(c), (g), (h) into (2.11 $\theta)$

$$\frac{d}{dr} \left(\frac{1}{r} \frac{d}{dr} (r v_{\theta}) \right) = 0 \qquad (3.17)$$
Integrate
$$v_{\theta} = \frac{C_1}{2} r + \frac{C_2}{r} \qquad (i)$$
B.C. are
$$v_{\theta}(r_i) = \omega r_i \quad v_{\theta}(r_o) = 0 \qquad (j)$$

(j) gives
$$C_1$$
 and C_2

$$C_1 = -\frac{2\omega r_i^2}{r_o^2 - r_i^2} \qquad C_2 = \frac{\omega r_i^2 r_o^2}{r_o^2 - r_i^2} \qquad (k)$$
(k) into (i)

$$\frac{v_{\theta}(r)}{\omega r_i} = \frac{(r_o / r_i)^2 (r_i / r) - (r / r_i)}{(r_o / r_i)^2 - 1} \qquad (3.18)$$
Simplify energy equation (2.24) and dissipation function (2.25). Use(b), (c), (g), (h)

$$k \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \mu \boldsymbol{\Phi} = 0 \qquad (i)$$
and

$$\boldsymbol{\Phi} = \left(\frac{dv_{\theta}}{dr} - \frac{v_{\theta}}{r} \right)^2$$
(3.18) into above

$$\boldsymbol{\varPhi} = \left[\frac{2\omega r_i^2}{1 - (r_i / r_o)^2}\right]^2 \frac{1}{r^4} \qquad (m)$$
Combine (m) and (l)

$$\frac{d}{dr} \left(r \frac{dT}{dr}\right) = -\frac{\mu}{k} \left[\frac{2\omega r_i^2}{1 - (r_i / r_o)^2}\right]^2 \frac{1}{r^3} \qquad (3.19)$$
Integrate(3.19) twice

$$T(r) = -\frac{\mu}{4k} \left[\frac{2\omega r_i^2}{1 - (r_i / r_o)^2}\right]^2 \frac{1}{r^2} + C_3 \ln r + C_4 \qquad (n)$$
Need two B.C.

$$T(r_o) = T_o \quad \text{and} \quad \frac{dT(r_i)}{dr} = 0 \qquad (o)$$
(n) and (o) give C_3 and C_4

$$C_3 = -\frac{\mu}{2k} \left[\frac{2\omega r_i^2}{1 - (r_i / r_o)^2}\right]^2 \frac{1}{r_i^2}$$

$$C_{4} = T_{o} + \frac{\mu}{4k} \left[\frac{2\omega r_{i}^{2}}{1 - (r_{i} / r_{o})^{2}} \right]^{2} \left[\frac{1}{r_{o}^{2}} + \frac{2}{r_{i}^{2}} \ln r_{o} \right]$$

Substitute into (o)

$$T(r) = T_{o} + \frac{\mu}{4k} \left[\frac{2\omega r_{i}}{1 - (r_{i} / r_{o})^{2}} \right]^{2} \left[(r_{i} / r_{o})^{2} - (r_{i} / r)^{2} + 2\ln(r_{o} / r) \right]$$
(3.20a)
or

$$\frac{T(r) - T_{o}}{\frac{\mu}{4k} \left[\frac{2\omega r_{i}}{1 - (r_{i} / r_{o})^{2}} \right]^{2}} = (r_{i} / r_{o})^{2} - (r_{i} / r)^{2} + 2\ln(r_{o} / r)$$
(3.20b)
Maximum temperature at $r = r_{i}$

$$T(r_{i}) - T_{o} = \frac{\mu}{4k} \left[\frac{2\omega r_{i}}{1 - (r_{i} / r_{o})^{2}} \right]^{2} \left[1 + (r_{i} / r_{o})^{2} + 2\ln(r_{o} / r_{i}) \right]$$
(3.21)
Use Fourier's law to determine frictional energy per
unit length $q'(r_{o})$

(3.20a) in above

$$q'(r_o) = -2\pi r_o k \frac{dT(r_o)}{dr}$$

$$q'(r_o) = 4\pi \mu \frac{(\omega r_i)^2}{1 - (r_i / r_o)^2}$$
(3.22)
(iii) Checking
• Each term in solutions (3.18) and (3.20b) is dimensionless
• Equation (p) has the correct units of W/m
Differential equation check:

- Velocity solution (3.18) satisfies (3.17) and temperature solution (3.20) satisfies (3.19) *Boundary conditions check*:
 - Velocity solution (3.18) satisfies B.C. (j) and temperature solution (3.20) satisfies B.C. (o)

Limiting check:

- Stationary shaft: No fluid motion. Set $\omega = 0$ in (3.18) gives $v_{\theta} = 0$
- Stationary shaft: No dissipation, no heat loss Set $\omega = 0$ in (3.22) gives $q'(r_o) = 0$
- Global conservation of energy:

Heat leaving housing = shaft work

Shaft work per unit length

$$W' = -2\pi r_i \tau(r_i) \varpi r_i \tag{p}$$

$$\tau(r_i) = \text{shearing stress}$$

$$\tau(r_i) = \mu \left[\frac{dv_{\theta}}{dr} - \frac{v_{\theta}}{r} \right]_{r=r_i}$$
(q)
(3.18) into the above
$$\tau(r_i) = -2 \frac{(r_o / r_i)^2 \mu \omega r_i}{(r_o / r_i)^2 - 1}$$
(r)

Combining (p) and (r)

$$W' = 4\pi\mu \frac{(\omega r_i)^2}{1 - (r_i / r_o)^2}$$
(s)
This is identical to surface heat transfer (3.22)
(5) Comments
• The key simplifying assumption is axisymmetry

- Temperature rise due to frictional heat increase as the clearance s decreased
- Single governing parameter: (r_i / r_o)

Example 3.4: A hollow shaft of outer radius, r_{θ} rotates with constant angular velocity, $\boldsymbol{\omega}$, while immersed in an infinite fluid at uniform temperature T_{∞} , Taking into consideration dissipation, determine surface heat flux. Assume incompressible laminar flow and neglect end effects.

Given

- Fluid motion is due to shaft rotation
- Axial variation in velocity and temperature are negligible for a very long shaft.
- Velocity, pressure and temperature do not • vary with angular position.

• The fluid is incompressible (constant density)

• The determination of surface temperature and heat flux requires the determination of temperature distribution in the rotating fluid.

• Use cylindrical coordinates

(2) Problem Definition(Find).

Determine velocity & temperature distribution in rotating fluid

- (3) Solution Plan(Equation)
 Apply continuity and Navier-Stokes eqs. to determine flow field
- Use energy equation to determine temperature field

(4) Plan Execution

- (i) Assumptions
- Steady state • Laminar flow

• Axisymmetric flow

• Constant properties(density, viscosity and conductivity),

• No end effects

• no angular and axial variation of velocity, pressure and temperature

• Negligible gravitational effect

 Negligible gravitational effect

 (ii) Analysis

 Temperature distribution is obtained by solving the energy equation. Thus we begin the analysis with the energy equation.

$$\rho c_{P} \left(\frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + v_{z} \frac{\partial T}{\partial z} \right) = k \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right] + \mu \boldsymbol{\Phi}$$
(2.24)

where

$$\boldsymbol{\varPhi} = 2\left(\frac{\partial v_r}{\partial r}\right)^2 + 2\left(\frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r}{r}\right)^2 + 2\left(\frac{\partial v_z}{\partial z}\right)^2 + \left(\frac{\partial v_{\theta}}{\partial r} - \frac{v_{\theta}}{r} + \frac{1}{r}\frac{\partial v_r}{\partial \theta}\right)^2 + \left(\frac{1}{r}\frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z}\right)^2 + \left(\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r}\right)^2 (2.25)$$
Need flow field v_r , v_{θ} and v_z
• Apply continuity and Navier-Stokes to determine flow field
 $\frac{\partial \rho}{\partial t} + \frac{1}{r}\frac{\partial}{\partial r}(\rho r v_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(\rho v_{\theta}) + \frac{\partial}{\partial z}(\rho v_z) = 0$ (2.4)
Constant ρ
 $\frac{\partial \rho}{\partial t} = \frac{\partial \rho}{\partial r} = \frac{\partial \rho}{\partial \theta} = \frac{\partial \rho}{\partial z} = 0$ (a)
Axisymmetric flow
 $\frac{\partial}{\partial \theta} = 0$ (b)

Long shaft: ∂	
(a)-(c) into (2.4) $v_z = \frac{\partial z}{\partial z} = 0$	(c)
$\frac{d}{d}(rv_{\star})=0$	(d)
dr (* r)	, í
integrate $r v_r = C$	(e)
Apply B.C. (No-slip) to determine C	
$v_r(r_o) = 0$	(f)
(e) and (f) give $C = 0$	
Use (e)	
$v_r = 0$	(g)
. Streamlines are concentric circles	
Apply the Navier-Stokes to determine v_{θ}	
	36

$$\begin{split} \rho & \left(v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} - \frac{v_r v_{\theta}}{r} + v_z \frac{\partial v_{\theta}}{\partial z} + \frac{\partial v_{\theta}}{\partial t} \right) = \\ \rho g_{\theta} - \frac{1}{r} \frac{\partial p}{\partial \theta} + \mu & \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_{\theta}) \right) + \frac{1}{r^2} \frac{\partial^2 v_{\theta}}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_{\theta}}{\partial z^2} \right] \\ \text{For steady state:} & (2.11 \, \theta) \\ & \frac{\partial}{\partial t} = 0 & (h) \\ \text{Neglect gravity, use (b), (c), (g), (h) into (2.11 \, \theta) \\ & \frac{d}{dr} \left(\frac{1}{r} \frac{d}{dr} (r v_{\theta}) \right) = 0 & (3.17) \\ \text{Integrate} & v_{\theta} = \frac{C_1}{2} r + \frac{C_2}{r} & (i) \\ \text{B.C. are} & v_{\theta}(r_o) = \omega r_o & V_{\theta}(\infty) = 0 & (j) \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) = v_{\theta}(r_o) & v_{\theta}(r_o) = 0 \\ & v_{\theta}(r_o) & v_{\theta}(r_o) & v_{\theta}(r_o) & v_{\theta}(r_o) & v_{\theta}(r_o) \\ & v_{\theta}(r_o) & v_{\theta}(r_o)$$

(j) gives
$$C_1$$
 and C_2
 $C_1 = 0$
 $C_2 = \omega r_o^2$
(k)
(k) into (i)
 $V_{\theta}(r) = r_o \omega \left(\frac{r_o}{r}\right)$
(3.18)
Simplify energy equation (2.24) and dissipation function
(2.25). Use(b), (c), (g), (h)
 $k \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr}\right) + \mu \Phi = 0$
(i)
and
 $\Phi = \left(\frac{dv_{\theta}}{dr} - \frac{v_{\theta}}{r}\right)^2$
(3.18) into above

$$\Phi = 4\omega^{2\frac{r^{4}}{r^{4}}} \qquad (m)$$
Combine (m) and (l)

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{4\mu}{k}\frac{\omega^{2}r_{o}^{4}}{r^{3}} \qquad (3.19)$$
Integrate(3.19) twice

$$T(r) = -\frac{\mu}{k}\omega^{2}r_{o}^{4}\frac{1}{r^{2}} + C_{3}\ln r + C_{4} \qquad (n)$$
Need two B.C.

$$T(\infty) = T_{\infty} \quad \text{and} \quad r \to \infty \quad T \text{ is limited} \qquad (o)$$
(n) and (o) give C_{3} and C_{4}

$$C_{3} = 0 \qquad C_{4} = T_{\infty}$$

Substitute into (o)
$$T(r) = T_{\infty} - \frac{\mu}{k} \omega^2 \frac{r_o^4}{r^2}$$

Surface temperature at $r = r_o$

$$T(r_o) = T_{\infty} - \frac{\mu}{k} \omega^2 r_o^2$$
(3.21)

(3.20a)

Use Fourier's law to determine frictional energy per unit length $q'(r_o)$

(3.20a) in above

$$q'(r_o) = -2\pi r_o k \frac{dT(r_o)}{dr}$$

$$q'(r_o) = -4\pi \mu (\omega r_o)^2$$
(3.22)
(iii) Checking
• Each term in solutions (3.18) and (3.20b) is dimensionless

- Equation (p) has the correct units of W/m Differential equation check:
- Velocity solution (3.18) satisfies (3.17) and temperature solution (3.20) satisfies (3.19) Boundary conditions check:
 - Velocity solution (3.18) satisfies B.C. (j) and temperature solution (3.20) satisfies B.C. (o)

Combining (p) and (r)

$$W' = -4\pi \mu (\omega r_o)^2$$
 (s)

 This is identical to surface heat transfer (3.22)
 (5) Comments

 • The key simplifying assumption is axisymmetry. This resulted in concentric streamlines with vanishing normal velocity and angular changes.
 • Surface temperature is lowest in the entire region.

 • Heat flow direct ion is negative.

• This problem was solved by specifying two conditions at infinity. If surface temperature is specified instead of fluid temperature at infinity, the solution determines T at infinity.