CHAPTER 4
BOUNDARY LAYER FLOW

APPLICATION TO EXTERNAL FLOW

4.1 Introduction
¢ Boundary layer concept (Prandtl 1904): Eliminate
selected terms in the governing equations

o Two key questions

(1)What are the conditions under which
terms in the governingequations can
be dropped?

(2) What terms can be dropped ?

e Answer: By two approaches
o Intuitive arguments

e Scale analysis

4.2 The Boundary Layer Concept:
Simplification of Governing Equations

4.2.1 Qualitative Description

Under certain conditions the action of viscosity
is confined to a thin region near the surface
called the viscous or velocity boundary layer

Under certain conditions thermal interaction between
moving fluid and a surface is confined to a thin region
near the surface called the thermal or temperature
boundary layer

o Conditions for viscous boundary layer:

(1) Slender body without flow separation
(2) High Reynolds number (Re > 100)

¢ Conditions for thermal boundary layer:




(1) Slender body without flow separation

(2) High product of Reynolds and Prandtl numbers
(RePr >100)

Peclet Number = Pe = RePr =

c c VoL
—pI:;"L S P74y

k k
(1) Fluid velocity at surface vanishes
(2) Rapid changes across BLto V_
(3) Rapid changes temperature across BL from 7 to 7
(2) Boundary layers are thin:

For air at 10 m/s parallel to 1.0 m long plate, 5= 6 mm
at end

(3) Viscosity plays negligible role outside the viscous BL
“4) l?{)undary layers exist in both forced and free convection
ows

s

4.2.2 The Governing Equations
Simplified case:
Assumptions:

(1) steady state

(2) two-dimensional

(3) laminar

(4) constant properties

(5) no dissipation

(6) no gravity

Continuity:
Ou Ov
o Lo _

=0 22)
ox Oy

x-direction:
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peplu——+v_—|=kl 5+ (2.19)
ox oy Ox oy




4.2.3 Mathematical Simplification

4.2.4 Simplification of the Momentum Equations

(i) Intuitive Arguments

Two viscous terms in (2.10x):
o*u + o*u
ox? o’

is one smaller than the other?

Insect dilemma: Too windy at position 0, where to go?

Move to position 4!
Conclusion:

Changes in u with respect to y are more
pronounced than changes with respect to x

*u __’u
) ax? ot
o Neglect 67‘2’ in (2.10%)
Oox
Pressure terms in (2.10x) and (2.10y):
o Slender body

o Streamlines are nearly parallel

o Small vertical velocity

“4.2)

@,
oy
.*. pdepends on xonly, i.e. p= p(x)

o 9 e
Oox dx dx
(4.2) and (4.4) into (2.10x) gives:

Boundary layer x--momentum equation

ou Ou 1dp,
u—+vy_—=——->12
ox Oy pox

o
6y2

“4.3)

“4.4)

@.5)

o Continuity equation (2.2) and the xmomentum boundary
layer equation (4.5) contain three unknowns: u, v, and Py,




o p,is pressure at edge of BL (y= ¢), obtained from
solution of inviscid flow outside BL

(ii) Scale Analysis

o Use scaling to arrive at BL approximations.

o Assign a scale to each term in an equation

Slender body

Free stream velocityl/ y

Length L

BL thickness &

Postulate:

)
—<<1 4.6)
L

If (4.6) is valid, we pose three questions:

(1) What terms in the governing equations can be
dropped?

(2) Is normal pressure gradient negligible compared to
axial pressure gradient?

(35). Under. what conditions is (4.6) valid?
ssign scales

u~V, (4.7a)
y~6 (4.7b)
x~L 4.7¢)

Apply (4.7) to continuity (2.2)

v __ou
dy ox
Using (4.7) v Vl
5§ L
Solving for v
]
vV, 1 @.7d)
Conclusion: v <<V,
Order of magnitude of inertia and viscous terms
X-momentum equation (2.10x)
o First inertia term:
ou_ Vo Ve (a)
ox L
e Second inertial term:
ou vV,




Use (4.7d) ou v

yv—~V = (b)
o “L
Conclusion: 2 inertia terms are of the same order
Examine 2 viscous terms in (2.10x)
o First viscous term:
o’u vV,
A2~ 2 ©
ox L
e Second viscous term:
Fu v,
o’ &
Conclusion:
*u _’u
S <<5 @.2)
ox %%
.". Neglect &”u/dx? in (2.10x)
Examine 2 viscous terms in (2.10y)
o'v o' s
ox’ oy*
Simplify (2.10x) and (2.10y) Using (4.2) and (4.8)
2
ual_kval:_lal_,_vai’z‘ (49%)
ox oy pox Oy
ov  Ov 16p 8%
U—+v _—=———"+v— 4.9y)
ox Oy poy oy
This answers first question
o Second question: pressure gradient
Scale @ and ('ip
Ox Oy
Balance axial pressure with inertia in (4.9x)
op ou
— ~ pU— (e)
ox p ox
Scale using (4.7
g@4.7) op v ‘xz)
Lop=
Ox L
Balance pressure with inertial in (4.9y)
op V2
~ ~pP )
oy LL
Compare (e) and (f) using (4.6)
@ << al (4.10)

dy Ox




Since
p=px,y)

op op
dp=—""dx+—=d
? ox oy Y

dp _ op 1_'_(6p/6y)a’7y
(Op/ ox) dx

or

' @11
dx 0

dy
Scale I ﬂ . é

dx L

(@)
(e)-(g) into (4.11)

9 _P[i45/1y] a-)
dx 0Ox

Invoke(4.6) dp Op

(@)
dx Ox "

Conclusion

Boundary layer pressure depends on x only.
Variation with y is negligible

.". Pressure p(x) inside BL = pressure Py (X) at edge

P(X,¥) = Py (x) )

o dpe

(4.12)
ox dx

(4.12) into (4.9%)
Ou Ou 1dp, o°u

+y —=—— 2ty —
ox oy pdx oy’

(4.13) is xmomentum eq. for BL flow. Result is based on key
assumption that §/ L << 1.

4.13)

o Third question: condition for validity of (4.6)

é <<1 (4.6)
L

Balance inertia with viscous force in (4.13)

Inertia: ug—z ~V, VT“’ (@)
. o’u V,
Viscous: vV ~ v% (b)
Oy )
Equate
“ Vi Ve
= Ly
L ]
Rearrange
) v
—~ = (d.14a)




or 5 1
—~ (4.14b)
L .[Re;
where
Re; = Vol 4.15)
v
J
Z<< 1 when \/Re; >>1
Generalized (4.14)
1
—~ (4.16)
X Re

4.2.5 Simplification of the Energy Equation
Simplify (2.19)

2 2
PCp ua—T+va—T =k 6—T+6—T (2.19)
Ox oy ox? 6y2

(i) Intuitive Arguments

Two conduction terms in (2.19):
o'T , O'T
ot oy’

is one smaller than the other?

Too _ _-—-‘5t
v, o

Fig.4.2 N
Insect dilemma: Too hot at position 0, where to go?

Move to position 2!
Conclusion:

Changes in T with respect to y are more
pronounced than with respect to x

o'r o'r
PR < PR

< 4.17)
ox? oy?
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o Neglect a—T in (2.19):
ox?

u—+v—=a— (4.18)

(4.18) is the boundary layer energy equation.
(ii) Scale Analysis
o Use scaling to arrive at BL approximations
o Assign a scale to each term in an equation
Slender body
Free stream velocity V_
Free stream temperature 7,
Length L
BL thickness &, ,

Postulate:

[ «<1 (4.19)
L

If (4.19) is valid, we pose two questions:
(1) What terms in (2.19) can be dropped?
(2) Under what conditions is (4.19) valid?
o Answer first question

Assign scales:

y~ 5{ (4.20)
AT ~T T, @.21)
x~L (4.7b)

Scales for # and v depend on whether &, is larger or smaller
than 8.

Two cases, Fig. 4.4:

case(1):6,>0

Fig. 4.4
Case (1): 51 >0
u~V, 422
Scaling of continuity:
6[
v~V T 4.23)

Scales for convection terms in (2.19):




Use (4.7b) and (4.20-4.23)

ual ~ Voo Al (a)

ox L

and oT AT
VI~V ®)

oy L

Conclusion: the two terms are of the same order
Scale for conduction terms:

—~— (c)
and

o~ @

. 9T 8T
.o 6x—2<<ay—2 (e)

.". Energy equation simplifies to
or _ oT _ d'T
Uu—+v—=

a— (4.18)
ox &y 9
Second question: Under what conditions is (4.19) valid?
i <<1 4.19)
L
Balance between convection and conduction:
oT  d’T
u—~a A2
Ox oy
Scaling AT AT
Ve — o—5
L .
o s [a
L VL
or
Q k
or L Y\ pc prL
é 1 4.24)
. L ./PrRe
Conclusion:
% <<1 when ./PrRe >>1 (4.25)

Define Peclet number Pe
Pe=PrRe; (4.26)

Example: For Pe= 100, % ~0.1




e Whenis 8, >6 ?
o Take ratio of (4.24) to (4.14b)

o 1 @27
5 APr '
.". Criterion for: &, >38
8,>06 when /Pr<<1 (4.28)

Case (2): 5] < ¢ Fig. 4.4

case(2):9, <0
Fig. 4.4

o ywithin the thermal boundary layer is smaller than free
stream velocity

o Similarity of triangles

1)

U ~ ngf 4.29)
Scaling of continuity
52
v~V L’ (4.30)

Use (4.29), (4.30) and follow procedure of case (1):
conclusion:

(1) The two terms are of the same order

(2) Axial conduction is negligible compared to normal
conduction

Second question: Under what conditions is (4.19) valid?

Balance between convection and conduction:

oT 9T
u—~a ~
Oox oy
Use (4.29) for u, scale each term

5, AT AT

o ar AT
s L &8
or

k 6

_ ®
pe VoL L

(6I/L)3~

However

1

JRe,

(4.14b)

L
L

Substitute into (f)

10



S, 1
Bt A @.31)

L pr'" [Re,

Conclusion:

% <<1 when P¢'% [Re, >>1 @32)

* Whenis 8, <6?
o Take ratio of (4.31) to (4.14b)
J, 1
5 T piB
.". Criterion for: J,<d
8,<6 when Pr'?>>1 @34)

(4.33)

4.3 Summary of Boundary Layer Equations
for Steady Laminar Flow

Assumptions:

(1) Newtonian fluid

(2) two-dimensional

(3) negligible changes in kinetic and potential energy

(4) constant properties

o Assumptions leading to boundary layer model
(5) slender surface

(6) high Reynolds number (Re>100)

(7) high Peclet number (Pe>100)

o Introduce additional simplifications:
(8) steady state
(9) laminar flow
(10) no dissipation (@=0)
(11) no gravity and
(12) no energy generation ( 4" =0)
Governing boundary layer equations:
Continuity:
Ou Ov
— =

0 2.2)
ox Oy

x*Momentum:
Oou Ou 14 ou
T LA

= (4.13)
ox oy pdx oy’
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Energy:

aT  oT _ 9T

u-—+v-—=a 4.18
oy T g @

Note the following:
(1) Continuity is not simplified for boundary layer flow

(2) Pressure in (4.13) is obtained from inviscid solution
outside BL. Thus (2.2) and (4.13) have two
unknowns: # and v

(3) To include buoyancy, add pBg(T — T, )to right (4.13)
(4) Recall all assumptions leading the 3 equations

4.4 Solutions: External Flow

o Streamlined body in an infinite flow

e Examine thermal interaction

e Need temperature distribution 77

o Temperature depends on velocity distribution

o For constant properties, velocity distribution is
independent of temperature

4.4.1 Laminar Boundary Layer Flow over
Semi-infinite Flat Plate: Uniform Surface
Temperature

Fig.4.5

o Plate is at temperature 7,

o Upstream temperature is 7,
o Upstream velocity uniform and parallel

o For assumptions listed in Section 4.3 the continuity,
momentum and energy are given in (2.2), (4.13) and (4.18)

o Transition from laminar to turbulent at:

Re, =V x, /v 500,000

12



(i) Velocity Distribution

Find:

o Velocity distribution

¢ Boundary layer thickness 5(x)

o Wall shearing stress 7,(x)

(a) Governing equations and boundary conditions:
Continuity and x-momentum:

Ou  Ov
—+—=0 2.2)
ox Oy
2
ual_l_val:_ldpw_l_‘,ai'; (4.13)
ox oy p dx oy
The velocity boundary conditions are:
u(x,0)=0 (4.352)
v(x,0)=0 (4.35b)
u(x,0)="V_ (4.35¢)
u((], y) = Voo (4.35d)
(b) Scale analysis: Findd(x)and7,(x)
Result of Section 4.2.4:
é ~ 1 (4.16)
x ./Re,
Wall stress 7, :
T T H ov + Ou (2.7a)
= = —+— 7a
we ox oy
Atwally=0,v(x,0)=0
Ou(x,0
0 =H % (4.36)
Scales for # and y:
U~V @7a)
x~L @.7¢)
(4.36) is scaled using (4.7)
Voo
To ~ /13 (a)
Use (4.16) for &
v,
T,~ nyRex (b)
Friction coefficientC ;
C,= %o . @.37a)
T W2)pv2
Use (b) for 7,
C,~ 1 (4.37b)
’ Re

X

»

13



(c) Blasius solution: similarity method

e Solve (2.2) and (4.13) for the #and v

o Equations contain 3 unknowns: u, v, and Po

o Pressure is obtained from the inviscid solution outside BL
Inviscid solution:

o Uniform inviscid flow over slightly curved edge BL

o Neglect thickness &

* Model: uniform flow over a flat plate of zero thickness

o Solution:
u=y,_, v=0, p=pPy, = constant (4.38)
Thus the pressure gradient is
dp,, =0 (4.39)
d’x a
(4.39) into (4.13) 5
ou ou 0’u
U—+v—=v—- (4.40)

oy o
® (4.40) is nonlinear

e Must be solved simultaneously with continuity (2.2)

e Solution was obtained by Blasius in 1908 using

similarity transformation:

Combine x and y ito a single variable 7(x, y) ‘

Veo
nx,y)=y |—= (41
VX

Postulate that Vl depends on 77(x, y) only

©

LA ﬂ (4.42)
Ve dn

f= £(7) to be determined

NOTE:

(1) Including /V, / v in definition of 77 , is for convenience
only

a 7(x,y) in (4.41) is arrived at by formal procedure
Continuity (2.2) gives v:

v __ou
dy Ox
Multiplying by dy, integrate
Ou
v= —f &dy @

14



Use (4.41) and (4.42) to express dy and Ou / Ox in terms of

the variable 77
Voo
vx

dy = dn

Chain rule:
Ou _dudny
ax  dpdx
Use (4.41) and (4.42) into above
ou_ Vpyd'f

o 2xdn
(b) and (c) into (a)

v
Vox

d’f
I pa
[ el

N | =

R
Ve

(b)

©

Integration by parts gives

L=1 v qi_f (4.43)
Ve 2\Vox\ dn
e Need function f(77), use momentum equation
First determine du / dy and 8”u/ oy*
2
oy dndy dn” \vx
d’u &3rv, ©
Z = — < e
ot Tdpivx
(4.42), (4.43) and (c)-(e) into (4.40)
af d’f
2—=+ f(n)—5=0 (4.44)
dn® e
Partial differential equations are transformed
into an ordinary differential equation
NOTE: x and y are eliminated in (4.44)
¢ Transformation of boundary conditions
4 () =1 (4.452)
dn
f£(0)=0 (4.45b)
a1 ©) =0 (4.45¢)
dn

15



df) _,

(4.45d)
dn
Equations (4.44) is third order.
How many boundary conditions?
o Difficulty: (4.44) is nonlinear
® Solution by power series (Blasius)
o Result: Table 4.1
Table 4.1 Blasius solution [1]
v, df u d'f
=y == f 2= ;
=00 dn V, dn’
0.0 0.0 0.0 0.33206
0.4 0.02656  0.13277 | 0.33147
0.8 0.10611 0.26471 0.32739
24 0.92230 0.72899 0.22809
2.8 1.23099  0.81152 0.18401
3.2 1.56911 0.87609 0.13913
3.6 1.92954 = 0.92333 | 0.09809
4.0 2.30576 0.95552 0.06424
4.4 2.69238 0.97587 0.03897
4.8 3.08534  0.98779 | 0.02187
5.0 3.28329 | 0.99155 | 0.01591
5.2 3.48189 = 0.99425 | 0.01134
5.4 3.68094 = 0.99616 | 0.00793
5.6 3.88031 0.99748 0.00543 "
¢ Find 6 (x) wall stress 7,(x)
o Define 6 as the distance y from the plate where
ulV,,=0.994, Table 4.1 gives
vx
d=52|—
Veo
or
5 52
—= (4.46)
X +/Re,
Scaling result:
) 1
—~ (4.16)
x ./Re,
o Wall stress 7,: use
Ou(x,0
= % (4.36)

16



(d) into (4.36), use Table 4.1
2
7, = 1V 2SO g 33206 v, V=
vx d}] vx

Friction coefficient C ; : (4.47) into (4.37a)
_ 0.664
~Re

¢r

=

Scaling result:

(4.47)

(4.48)

(4.37b)

(ii) Temperature Distribution

Fig. 4.5

o Isothermal semi-infinite plate
¢ Determine: J,, i(x) and Nu,
e Need temperature distribution

(a) Governing equation and boundary conditions

Assumption: Listed in Section 4.3

Energy equation

The boundary condition are:
T(x,0)=T,
T(x,0)=T,
T(0,y)=T,
(b) Scale analysis: &, , i(x) and Nu,
From Section 4.2.5: Set L = x (4.24) and (4.31)
Case (1): 5, > 5 (Pr<<1)
5 1

—l Y~

x ./PrRe,

(4.18)

(4.492)

(4.49b)

(4.49¢)

(4.50)

17



Case (2): §, <S8 (Pr>>1)

s, 1

x " P [Re,

Heat transfer coefficient /(x)

0T (x,0)
oy
I-T,
Use scales of (4.20) and (4.21) into above

n~ ko

t

Where J,is given by (4.50) and (4.51).

h=-k

(4.51)

(1.10)

(4.52)

Case (1): 6, > § ( Pr<<1), (4.50) into (4.52)

h~%4/PrRex , for Pr<<i

Local Nusselt number NVu,

(4.53) into (4.54)
Nu, ~.|PrRe, , for Pr<<1

(4.53)

454)

(4.55)

Case (2): 8, << 8 ( Pr>>1). Substituting (4.51) into (4.52)

k13
h~—Pr "\/Re, , for Pr>>1 (4.56)
X
Nusselt number:
1/3
Nu,~Pr ~/Re, , for Pr>>1 @57
(c) Pohlhausen’s solution: 7(x), 5, , #(0),Nu,
¢ Energy equation (4.18) is solved analytically
® Solution by Pohlhausen (1921) using similarity
transformation
o Defined & T—T
g=—""s (4.58)
T,-T,
(4.58) into (4.18)
0 00 _ 0%
u6—+v6—=a6f2 4.59)
x
B.C. yooo
6(x,0)=0 (4.602)
(x,0)=1 (4.60b)
O(x,0)=1 (4.60c)

18



e Solve (4.59) and (4.60) using similarity
o Introduce transformation variable 7

/Vw
nx,y)=y |—= @41
vx

0(x,y)=06(n)

o Blasius solution gives #and v

Assume

M ﬂ (4.42)
Ve dn
L=1 v qi_f (4.43)
Ve 2\Vox\ " dn
(4.41)-(4.43) into (4.59) and noting that
00 _doon__1n de
Ox dnox 2xdnp
20 _doon _ [V, do
dy dnoy vxdn
00 _ Ve d°0
ayl vx dﬂz
(4.59) becomes )
d P d
7? + i f(”)i =0 (4.61)
dn 2 dn
Result:
Partial differential equation is transformed
into an ordinary differential equation
NOTE:
(1) One parameter: Prandtl number Pr
(2) (4.61) is linear, 2nd order ordinary D.E.
(3) f(77) in (4.61) represents the effect motion
Transformation of B.C.:
0(03) =1 (4.62a)
0(0)=0 (4.62b)
B(oo) =1 (4.62¢)
Solution: Separate variables, integrate twice, use B.C.
(4.62) (Details in Appendix) »
© 2 r
%] -
n
O(n)=1- 1 (4.63)

[+ 2 "
o] -
0 d]]




Surface temperature gradient:

a00)  [0.332]"
d?] - o R Pr
J, [5r]
n |dng
o Integrals are evaluated numerically

d’f

dn?

(4.64)

. is obtained from Blasius solution

o Results are presented graphically in Fig. 4.6

1.0 =
Tobfol_| A0-7(ain] 1T
0.

i
(AN =

0.6

|
~

g3~
|
N

s 04

LAPr=0.01]
]
[

0 2 4 6 g 10 12 14

1z
n=y|->
VX

Fig.4.6 Pohlhausen'ssolution

0.2

N~ T
S
N\

¢ Determine: J,, #(x) and Nu,
e Fig. 4.6 gives 5, . At y=9,, T =T, , or

T-1i ~1, at y=35, (4.65)
Too_Ts

o Fig. 4.6 shows that &,(x)depends on Pr
o Local heat transfer coefficient /(x): use (1.10)

3T (x,0)

h= —kaiy (1.10)
T\' - Tw

0T (x,0) _ dldB(O)al
 do dn o
Use (4.41) and (4.58) into above
0T (x,0) —(T,-T,) Vldﬂ(())
oy vx dn

where

20



Substitute into (1.10)

vV, do(0
h(x)=k /%“’ 460 (4.66)
vx dn
e Average heat transfer coefficient:
_ L
h= lj. h(x)dx (2.50)
LYy
Use (4.66) and integrate
- k do(0)
h=2—./Re;, —— (4.67)
LYt ap
e Local Nusselt number: (4.66) into (4.54)
Nu, = @JRQ (4.68)
n

e Average Nusselt number:
~ deo
Nu; =2ﬂ11ReL (4.69)
dn
e Total heat transfer rate 47:
Plate length L and width W. Apply Newton’s law

L
r = M, ~ T, Wix=

(T, - Tw)WjoLh(x)dx =(T,~T,)WLk

or

qr=T, —T,)Ah @.70)
Heat transfer coefficient and Nusselt number
depend on surface temperature gradient do)
n
Table 4.2
. m depends on Pr 2000
dn 40(0)
Pr dn
o It is determined from (4.64) 0.001 0.0173
e Values in Table 4.2 0.01 0.0516
o Approximate values of 0.1 0.140
0.5 0.259
do(0) . )

——2 are given by: 0.7 0.292

n 1.0 0.332

7.0 0.645

10.0 0.730

15.0 0.835

50 1.247

100 1.572

1000 3.387
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@ =0.564Pr''? | Pr<0.05 @.712)

@ =0.332Pr'3 | 06<pPr<10 @.71b)
n

@=0.339Pr1/3 , Pr>10 @.71¢)
n

e Compare with scaling:
o Two cases: Pr<<1 and Pr>>1
Combine (4.71a) and (4.71c) with (4.68)

Nu, =0.564 Pr''* [Re ., for Pr<0.05 @720

Nu,=0339Pr'3 [Re_, for Pr>10 @120

o

Scaling results:

Nu, ~.[PrRe, , for Pr<<1 (4.55)
13
Nu,~Pr ~/Re, , for Pr>>1 4.57)

o Fluid properties: Evaluated at the film temperature 7' ¥

T, 2

(4.73)

4.4.2 Applications: Blasius Solution,

Pohlhausen’s Solutions and Scaling
® Three examples

Example 4.1: Insect in Search of Advice
e Air at 30°C,
V,=4m/s

o Insect at 0
o Determine velocity u at locations 0, 1, 2, 3, 4.

o Is insect inside BL?

(1) Observations.

o External forced convection boundary layer problem

22



e Changes in velocity between 1 and 3 should be small
compared to those between 2 and 4

o Location 4 should have the lowest velocity

o If the flow is laminar Blasius applies

o The flow is laminar if Reynolds number is less than 500,000
(2) Problem Definition. Determine u at the five locations

(3) Solution Plan.

e Check the Reynolds number for BL approximations and
if the flow is laminar

o If laminar, use Blasius solution, Table 4.1, to determine
uand §

(4) Plan Execution

(i) Assumptions. All assumptions leading to Blasius
solution: These are:

o Newtonian fluid

o steady state

o constant properties

o two-dimensional

o laminar flow (Re, < 5x10)

e viscous boundary layer flow (Re, > 100)

¢ (7) uniform upstream velocity

o flat plate

o negligible changes in Kinetic and potential energy

* no buoyancy (=0 or g=0)

(ii) Analysis
Re, =—=— (a)
V., = upstream velocity = 4 m/s
v = kinematic viscosity = 16.01 x 10702 /s
Transition Reynolds number:
Re, =5x10° ()
¢ Laminar flow if Re, < Re,
¢ Viscous BL approximations are valid for
Re, >100 ©
At x=151 mm:

e 4(m/s)0.151(m)

= = 37,726
16.01x107%(m?/s)

X




.". BL flow is laminar. Use Blasius solution
Determine

=y @

N

n=
5_ 5 (4.46)

x +/Re, '
(iii) Computations.

e Calculate 77 at each location, use Table 4.1 to find u/V.
Results:

location x(m) y(m) Vi w/V,, u(m/s)
0 0.150 | 0.002  2.581 0.766 = 3.064
1 0.151 | 0.002 2.573 0.765 3.06
2 0.150 | 0.003 3.872 0.945 3.78
3 0.149  0.002 2.59 0.768 = 3.072
4 0.150  0.001 1.291 0.422 1.688

o Use (4.46) to determine § at x = 0.151m and Re, = 37,726
52 5.2

S=-2f = >
[Re, " 37,126

Thus the insect is within the boundary layer

0.151(m) = 0.004m = 4 mm

(iv) Checking. Dimensional check:
Equations (a) and (d) are dimensionally correct

Qualitative check: u at the five locations follow expected
behavior

(5) Comments.
o The insect should move to location 4
o Changes in z with respect to x are minor

o Changes in u with respect to y are significant

o What is important for the insect is the magnitude of the
velocity vector V= (&2 + 1#)"? and not u. However,
since ¥ << win boundary layer flow, using # as a
measure of total velocity is reasonable

Example 7.2: Laminar Convection over a Flat
Plate

o Water
oV = 0.25 m/s

o T =35°C
o T=85°C
o L=75cm

24



[a] Find equation for &,(x)
[b] Determine / at x= 7.5 cm and 75 cm

[c] Determine 47 for a plate S0 cm wide

[d] Can Pohlhausen's solution be used to q" at the trailing
end of the plate if its length is doubled?

(1) Observations

¢ External forced convection over a flat plate

¢ §,(x) increases with x

o Newton’s law of cooling gives q"and 9r

o h(x) decreases with x

o Pohlhausen's solution is applies laminar flow and all
other assumptions made

¢ Doubling the length doubles the Reynolds number

(2) Problem Definition. Determine temperature distribution

(3) Solution Plan

e Compute the Reynolds and Peclet numbers to establish if
this is a laminar boundary layer problem

o Use Pohlhausen's solution to determine o, , (x), 4 "andqr

(4) Plan Execution

(i) Assumptions. All assumptions leading to Blasius

solution: These are:

Newtonian fluid

o two-dimensional

negligible changes in kinetic and potential energy

constant properties

boundary layer flow

steady state

laminar flow

¢ no dissipation

® no gravity

no energy generation

o flat plate

negligible plate thickness

uniform upstream velocity V

uniform upstream temperature 7o
o uniform surface temperature 7%

e no radiation
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(ii) Analysis and Computations
e Are BL approximations valid? Calculate the Reynolds and

Peclet. Condition:
Re,.>100 and Pe= Re Pr >100

_Vex
v

(a)

Re,
Transition Reynolds number: Re
Re, =5x10° ®

Properties at T’ r
T, =(I,+T,)/2 ©

T, =85°C

T,=35C

T, = (85+35)("C)/2 = 60°C

k =0.6507 W/m-"C

Pr=3.0
v =0.4748 x 10~ m?%/s.

at x=7.5cm Re, and Peare
Re, = Ve, x _ 0.25(m/s)0_.;)75(2m) —3.949x10*
14 0.4748x10°(m" /s)

Pe=Re Pr=3.949x10*x3 =11.85x10*

‘. BL approximations are valid, flow is laminar
Pohlhausen's solution is applicable.

[a] Determine 8,: Aty=06,, T =T,

From Fig. 4.6: Value of 7rat 6(77,) =1and Pr=3 atis

approximately 2.9
n,=29=6,V,/vx
or
2.9 29
e - = @

x V. vx -/Re,

[b] Heat transfer coefficient:

h(x)=k, /Q @ (4.66)
do(0) vx an
dn

(4.71b)

@ =0.332Pr'3 | 0.6<pPr<10
n




460 _ 0.332(3)"* = 0.4788
dn

Substituting into (4.66) for x=0.075 m

h=825.5%
m-"C

At x=0.75m
h= 2612L
m°-°C
[c] Heat transfer rate:
qr=T, —T,)Ah @.70)

L = length of plate =75 cm =0.75 m
W= width of plate =50 cm = 0.5 m

h= Z%JReL 49(0) 4.67)

dn
Re; =3.949x10°. Substitute into the above
h=5221 %
m ="C
Substitute into (4.70)
qr =9789W
[d] Doubling the length of plate:
Rey; =2 (3.949 x 10%) = 7.898 x 10°
.. Rey; > Re,

Flow is turbulent, Pohlhausen's solution is not applicable

(iii) Checking. Dimensional check:

Reynolds number is dimensionless and that units of #

and are /1 correct

Qualitative check: As xis increased & decreases

Quantitative check: Computed values of 4 are within

the range of Table 1.1

(5) Comments

o Check Reynolds number before applying Pohlhausen's
solution

o Velocity boundary layer thickness ¢ is given by

5 _ 52

x Re,
Compare (d) with equation (4.46):
5,<6

= (4.46)
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Example 7.3: Scaling Estimate of Heat Transfer
Rate

Use scaling to determine the total heat transfer rate for
conditions described in Example 7.2

(1) Observation
eNewton’s law gives heat transfer rate
o The heat transfer coefficient can be estimated using scaling

(2) Problem Definition.
Determine the heat transfer coefficient 4

(3) Solution Plan.
Apply Newton’s law of cooling and use scaling to determine /£

(4) Plan Execution

(i) Assumptions
o Newtonian fluid

o two-dimensional

o negligible changes in Kinetic and potential energy
o constant properties

¢ boundary layer flow

o steady state

® no dissipation

® no gravity

® no energy generation

© no radiation

(ii) Analysis. Application of Newton’s law of cooling gives
qr=T, -T,)AhR (.70)

®

A = surface area = LW, m?

/i = average heat transfer coefficient, W/m2-°C
L =length of plate =75 cm =0.75 m

91 = total heat transfer rate from plate, W

T, = surface temperature = 85°C

T, = free stream temperature = 35°C

W= width of plate =50 cm = 0.5 m

hby (1.10)
dT(x,0)
oy

h=-k——— 1.10
Ts_Tw (1.10)

k= thermal conductivity = 0.6507 W/m-°C

28



Follow analysis of Section 4.41, scale of & for Pr>>1
k 13
v

h~—P Re, , for Pr>>1 (4.56)
X
Re, = @ and Pr=3
v
Seth~h, x= L, A= WL and substitute (4.56) into (4.70)
4r ~(T,—T)W k Pr'” [Re, @

(iii) Computations
Re; =3.949x10°
Substitute into (a)
g7 ~(85—35)(°C)0.5(m)0.6507(W/m—°C)3"" /392900

qr ~14740 W

Using Pohlhausen’s solution gives 4, = 9789 W

(iv) Checking.

Dimensional Check:Solution (a) is dimensionally correct
(5) Comments.

Scaling gives an order of magnitude estimate of the heat

transfer coefficient. In this example the error using scaling
rate is 50%

4.4.3 Laminar Boundary Layer Flow over
Semi-infinite Flat Plate:
Variable Surface Temperature

Fig. 4.7

o Consider uniform flow over plate

o Surface temperature varies with x as:

T,(x)-T,=Cx" “72)
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e C and n, constants

o T, is free stream temperature

e DetermineT(x, y), h(x), Nu,and 97

e Assumptions: summarized in Section 4.3
(i) Velocity Distribution

* For constant properties velocity is independent of the
temperature distribution

o Blasius solution is applicable:

l=£ (4.42)
Ve, dn
v _1ljv ,]E_f “.43)
v, 2\V,x\"dn

/%
nx,y)=y |—= (41
VX

(ii) Governing Equations for Temperature Distribution
Based on assumptions OF Section 4.3:
T or _ 9T

N, 4.18
"oy % @19
Boundary condition
T(x,0)=T,=T, +Cx" (4.73a)
T(x,0)=T, (4.73b)
T0,y)=T, @.73¢)
(iii) Solution
o Solution to (4.18) is by similarity transformation
Define :
0= I-T, (4.58)
Too - Ts
Assume
0(x,y)=0(n) @75)

Use (4.41)-(4.43), (4.58), (4.72), (4.75), energy (4.18)
transforms to (Appendix C)
2
d—§+nPr£(l—0)+&f(7])ﬁ=0 (4.76)
dn dn 2 dn

B.C. (4.73):

B(oo) =1 (4.76a)
8(0)=0 (4.76b)
O(0)=1 (.76¢)
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o Note: Two B.C. coalesce into one
Heat transfer coefficient and Nusselt number:

Use (1.10)
0T (x,0)
he kY 1.10)
T,-T,
where

0T (x,0) _dT d6(0) on
oy do dn oy

Use (4.41),(4.58) and (4.72) into the above

oT(x,0) _ _Cx" Ve, d6(0)
oy vx dn

Substitute into (1.10)

h(x)=k Ve 46(0) (4.78)
vx dn

o Average heat transfer coefficient: Use (2.50)
_ L
h= lj h(x)dx (2.50)
LY,y
Substitute (4.78) into (2.50) and integrate
— k do(0)
h=2—./Re;, —— .79
L Loa n
o Local Nusselt number: (4.78) into (4.54)

Nu, = @JRQ (4.80)
n

o Average Nusselt number:

—  ,dé(0
Nu, =27()4/Re,“ (4.81)
dn
Heat transfer coefficient and Nusselt number
do(0)

depend on surface temperature gradient e
n

(ii) Results:
e Equation (4.76) subject to boundary conditions (4.77) is
solved numerically

o Solution depends on two parameters: the Prandtl
number Prand the exponent nin (4.72) d9(0)/dn is
presented in Fig. 4.8 for three Prandtl numbers.
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2.0 1
3
de0) [TEE I rh
46(0) WEeE
d?] | L—"1
g [E0A
0 0.5 1.0 1.5
n

Fig.4.8 @ for plate with varying surface temperature
K T,(x)-T,, = Cx"

4.4.3 Laminar Boundary Layer Flow over a
Wedge: Uniform Surface Temperature

o Symmetrical flow over
a wedge of angle 5 7

o Uniform surface
temperature

o Uniform upstream
velocity, pressure and
temperature

* Both pressure and velocity Fig.4.9
outside the viscous BL vary with distance x along wedge

o For assumptions of Section 4.3, the xxmomentum egq. is
Ou Ou 14 0*u
AT LS. L

(4.13)
ox oy p dx 6y2

C is a constant and m describes wedge angle:

m= —'B
2-p
o Apply (4.13) at edge of BL to determine % :

(4.83)

o Flow is inviscid
ev=y=0
cu=V,(x)
_ldp, _,, OV,
pdc 7 ox
Substitute into (4.13)

Ou Ou oV, du
u—+v_—=V, —>2+v— (4.84)
ox Oy ox 9
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The B.C. are

u(x,0)=V,(x)=Cx" (4.84a)
u(x,0)=0 (4.84b)
v(x,0)=0 (4.84¢)

(i) Velocity Solution:
o By similarity transformation (follow Blasius approach)

o Define a similarity variable 77 :

Veo(x C (m-
n(x,y)= yqfi( )- y\P I 456
VX v

e Assume u(x, y) to depend on 77:

u dF
=— (4.87)
Valx) dn )
Continuity (2.2), (4.86) and (4.87) give v
v=-V_(x) v m+l F—l_m qd—F (4.88)
xVo(x) 2 1+m dn
Substitute (4.82) and (4.86)-(4.88) into (4.84)
3 2 2
d’;_'_m"'leI;_m[E] +m=0 (4.89)
dn 2 dn dn

This is the transformed momentum equation B. C. (4.85)
transform to

4F(0) =0 (4.892)
dn
F0)=0 (4.89b)
M =1 (4.89¢)
dn »

Note the following regarding (4.89) and (4.90):
e xand y do not appear

e Momentum eq. (4.89) is 3rd order non-linear
e Special case: m = § = ( represents a flat plate

o Setting m =0 in (4.89) and (4.90) reduces to Blasius
problem (4.44) & (4.45), F(n) = f(17)

® (4.89) is integrated numerically
o Solution gives F(77)and dF /dn . These give uand v
(ii) Temperature Solution:

Energy equation:
6 00 _ 3%
Uu—+v—=a— (4.59)
ox oy 9
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Boundary conditions:

O(x,0)=0 (4.602)
(x,0)=1 (4.60b)
6(x,0)=1 (4.60¢)

where
9= -1, (4.58)

T o T, s

e Same energy equation and B.C. as the flat plate.
o Is temperature distribution the same?

e Equation (4.59) is solved by similarity transformation.
Assume:

9(x,y)=06(n) (4.75)

where

V_(x C _
n(x,y)= yﬂ/iw( )_ y\ﬁ D72 “.86)
VX 14

Substitute (4.86)-(4.88) and (4.75) into (4.59) and (4.60)

d—zf+&(m+1)F(n)ﬁ=0 @.91)
dn 2 dn
6(0)=0 (4.922)
f(xo)=1 (4.92b)
O(o0)=1 (4.920)

o Partial differential equations is transformed into
ordinary equation

o Two governing parameters: Prandtl number Pr and the
wedge size m

© (491) a linear second order equation requiring two B.C.

0

e F(n) in (4.91) represents effect of fluid motion
¢ B.C. (4.60b) and (4.60c) coalesce into a single condition

e Special case: m = f# = 0 represents flat plate. Set m =0
in (4.91) reduces to Pohlhausen’s problem (4.61)

Solution: (Details in Appendix B)
o Separate variables in (4.91)
o Integrate twice

o Applying B.C. (4.92), gives

I: em[—@ﬂ F (77)‘177] dn
o(m)=1- [

© NP
Iy expl - P F(n)dn] dn

(4.93)

102
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do(0)
dn
¢ Differentiate (4.93), evaluate at 7 = 0

-1
%570) = {_[0 exp[— @j‘: F (r])dﬂ] dl]} (4.94)

Temperature gradient at surface

e F(n) is given in the velocity solution
o Evaluate integrals in (4.93)&(4.94) numerically

do(0)
n

® Results for and F"(0) are in Table 4.3

Table 4.3 Surface temperature gradient and

dé(0)
d

n
velocity gradient F"(0) for flow over an isothermal wedge

m wedge ;nﬁgle F”(O) dB(O)/dn at five values of Pr
. 0.7 0.8 1.0 5.0 10.0
0 0 0.3206 | 0.292 0307 0.332  0.585  0.730

0.111 7/5@36° 05120 0331 0.348  0.378  0.669 = 0.851
0.333 7£/2 (90°)  0.7575  0.384 0.403  0.440 0.792  1.013

1.0 7T (180°) 1.2326  0.496 0.523  0.570 1.043 1344

o Use Table 4.3 to determine A(x)and Nu,

0T (x,0)
h=-k 67y (1.10)
Tv - Teo

OT(x.0) _dT d6(0)on
oy dg dn oy
Use (4.58),(4.75) and (4.86) into above
OTCN) _ g g [Vl 460)
oy vx dn
Substitute into (1.10)

h(x)=k Veo(x) 46(0) (4.95)
\ vx dpn

Local Nusselt number: substitute (4.95) into (4.54)

where
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Nu, = @JRQ (4.96)
n

where

xV(x
Re, = XV (x) 4.97)
v
o Key factor in determining A(x) and Nu, :
Lo 4oy L
Surface temperature gradient is , listed in Table 4.3.
n
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