CHAPTER 6
HEAT TRANSFER IN CHANNEL FLOW
6.1 Introduction

e Important factors:
(1) Laminar vs. turbulent flow

transition Reynolds number Re,, is

uD
ReD, =—=~2300 (6.1)
v
where
D= tube diameter
U = mean velocity
V = kinematic viscosity
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(2) Entrance vs. fully developed region

Based on velocity and temperature distribution: two regions:
(i) Entrance region
(ii) Fully developed region

(3) Surface boundary conditions

Two common thermal boundary conditions:
(i) Uniform surface temperature
(i) Uniform surface heat flux
(4) Objective
Depends on the thermal boundary condition:
(i) Uniform surface temperature. Determine: axial variation of
(1) Mean fluid temperature
(2) Heat transfer coefficient
(3) Surface heat flux

(ii) Uniform surface flux. Determine axial variation of:
(1) Mean fluid temperature
(2) Heat transfer coefficient
(3) Surface temperature

6.2 Hydrodynamic and Thermal Regions: General Features
¢ Uniform inlet velocity V; and temperature 7;

* Developing boundary velocity and thermal boundary layers
* Two regions: r

(1) Entrance region
(2) Fully developed region

6.2.1 Velocity Field L—Lh‘—kfully developed
Fig. 6.1

(1) Entrance Region (Developing Flow,
0<x<L,




* Hydrodynamic entrance region
e Length L,: hydrodynamic entrance length

o Streamlines are not parallel (v, # 0)
o Core velocity u, = u.(x)
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(increasing or decreasing with x?) g =
o Pressure p= p(x),(dp/dx<0) V; =
e d<D/2 -
FL,,*’F fully developed
(2) Fully Developed Flow Region Fig. 6.1
x> LII: fully developed flow
[IStreamlines are parallel (1 v = 0)
[For 2-D, constant p : u/6x=0
4
6.2.2 Temperature Field
¢ Entrance Region (Developing
Temperature, 0 < x < L): —
- 1 rT 4T %4,‘ <—T‘~1
© Thermal entrance region R < k
e Length L,: Thermal entrance length V;—| / ‘_T7/

o Core temperature T, is uniform

I.=Ty

L fully
. (5',<D/2 t developed
Fig.6.2

(2) Fully Developed Temperature Region

X2 L, fully developed temperature
e T=T(r,x)or 0T /Ox#0
o Dimensionless temperature @is invariant with x (8¢ /8x = 0)

6.3 Hydrodynamic and Thermal Entrance Lengths
L, and L, are determined by:

(1) Scale analysis

(2) Analytic or numerical methods

6.3.1 Scale Analysis

(1) Hydrodynamic Entrance Length L,

o Scaling of external flow: r

5 1
w0 ks

Apply (4.16) to flow in tube: at x = L, |. L, | fully developed
6~D Fig. 6.1
D 1

T T TR, @
L, .Re .




Express Rel_h in terms Re ),
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u ubD L, )’
Re,, =—"=—;" R ,,;"
(b) into (a) v.o.v
1/2
L,/ D
~1 6.2)
Re,,
(2) Thermal Entrance Length L,
Scale for u: u~u (all Prandtl numbers)
Scale of 8, : For external flow
8, ~ LRé;"* Pr'"? @24
Apply (4.24) for flow in tube: L=L,, 5, ~D
D~ L.Re"*pri? ,(@)
Express Re; in terms Rej,
ul, _uDlL, L
Rey,=—'=""""=Re, ! )
v D D
(b) into (a)
12
L /D -1 6.3)
Rey, Pr
£ ~ Pr 6.4)
L,
6.3.2 Analytic/Numerical Solutions: Laminar Flow
(1) Hydrodynamic Entrance Length L,
L
~h = C,Rep (6.5)
Dt' 8
DE = equivalent diameter
4A, o
D= Entrance length coeflﬁc?elnl? C, and C, [1]
P 3 C
A = flow area S VT
r Geometry Uniform suface
i | lcmpertare
P = perimeter [@) 00s6 | o00s 0033

C = coefficient Table 6.1 a
h hl:‘ alb=1 009 | 0066

0.041

Compare with scaling: btl 5 | ooss | oos

0.049

0054

1/2 @
Lh /D -1 62) ] 4 0075 | 0042
Re, —

001t | o012

0.008

Rewrite (6.5)

12
[L,, /D) @) @
Re),




Example: Rectangular channel, a /b = 2,, Table 6.1 gives C;, = 0.085
Substitute into (a)

1/2
(MJ =(0.085)""* =0.29 ®)
Re),

(2) Thermal Entrance Length L,
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L _
= CPrR (6.6)
D t €p
C, is given in Table 6.1
Compare with scaling
12
LiD\" 6.3)
Rey, Pr
Rewrite (6.6):
10
12
( D ] =" ()
Re, Pr
E le: R lar ch: 1,a/b=2,, Table 6.1 gives C, =0.049 gives
12
LD (0.049)"2 = 0.22 ©
Rej, Pr

Turbulent flow: Experimental results:
o L, and L, are shorter than in laminar flow

Rule of thumb :

L
10<— <60 (6.72)
D

s0<L <100 (6.7b)
D

6.4 Channels with Uniform Surface Heat Flux ¢

When surface heat flux is uniform L
Surface temperature is variable VoV Vv
Toi > x T,(x)
e Section length L I
"
o Inlet temperature: T,,; = T,,(0) qs
o Surface flux q: Fig. 6.3

Determine:
(1) Total heat transfer
(2) Mean temperature variation 7, (x)

(3) Surface temperature variation T (x)




Total heat: B "
q9,=9.A =q Px 6.8)
A= surface area
P = perimeter
Conservation of energy:
Assumptions:
(1) Steady state
(2) No energy generation
(3) Negligible changes in kinetic and potential energy
(4) No axial conduction

4, =qyPx=mc, [T, (x)-T,;]

or ”
P
T (=1 +%" x 6.9)
m mi mcp
m = mass flow rate 13
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¢ ,= specific heat

(6.9) applies to any region and any flow
(laminar, turbulent or mixed)

Use heat transfer analysis to determine
surface temperature T (x)

Newton’s law of cooling
4% = h(x)[T,(x)- T, (x)]

Solve for T, (x)

"

qs
T.(x)=T, (x)+
s (X)=T,(x) 7o)
Use (6.9) to eliminate 7,, (x) 14
o| Px 1
T (x)=T,; +4q; [rcp +7h(x):| (6.10)

h(x) is needed in (6.10) to determine 7g(x) ‘

To determine A(x):

(1) Laminar or turbulent flow?
(2) Entrance or fully developed region?

Example 6.2: Maximum Surface Temperature
o Water flows through tube

* Mean velocity = 0.2 m/s

. T,; =20°C




* Tn=80°C v i e

e D=0.5cm "
"X T, (x) —>
o Uniform surface heat flux = 0 7
0.6 W/em® ) T
o PN

® Fully developed flow at outlet

* Nusselt number for laminar fully developed flow

h
Nu, =" 7 =4.364 @)

Determine the maximum surface temperature
(1) Observations
® Uniform surface flux

o T, = T,(x), maximum at the outlet
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o Laminar or turbulent flow? Check Re
o Is outlet fully developed? Check Lj and L,
e Uniform Nusselt number (% is constant)

® Length of tube section is unknown
(2) Problem Definition

(i) Determine L

(ii) Determine T (L)
(3) Solution Plan

(i) Apply conservation of energy

(ii) Compute Re ),

(iii) Calculate L, and L,

(iv) Apply uniform flux analysis

(v) If applicable use (A) to determine /2

(4) Plan Execution

(i) Assumptions
o Steady state
« Constant properties
o Axisymmetric flow
o Uniform surface heat flux
o Negligible changes in Kinetic and potential energy
o Negligible axial conduction
o Negligible dissipation

(ii) Analysis
Conservation of energy:

ﬂDqu =mc(7,-T,) 15(3)




¢, = specific heat, J/kg-"C

D = tube diameter = 0.5 cm = 0.005 m
L = tube length, m

m= mass flow rate, kg/s

T,,; = mean temperature at the inlet = 20°C
T,,, = mean temperature at the outlet = 80°C

4= surface heat flux = 0.6 W/cm® = 6000 W/m*

From (a)

_ e (T~ T)

”
. T
Conservation of mass: Dqs

m= (/4 DPpu

where

(b)

©

= mean flow velocity = 0.2 m/s
p = density, kg/m3
Surface temperature: Apply (6.10)
Px 1
T()=T ,+q’ —t——
s mi s e, I x)
h = local heat transfer coefficient, W/m?-°C
P = tube perimeter, m
Ts(x): local surface temperature, °C

x = distance from inlet of heated section, m
Perimeter P:
P=zD

Maximum surface temperature: set x= L in (6.10)

(6.10)

(d
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" PL 1
T(D=T, +q |+
D= e )

Determine A(L): Is flow laminar or turbulent? Compute ReD

uD
Re, =
Properties T,
7o T +T
m 2

7o (204800 _

T
2
For water:
¢ ,=4182 J/kg-"C
k=0.6405 W/m-"C

(e)

®




Pr=3.57
v =0.5537x10° m¥s
p =988 kg/m’
Use (g)
0.2(m/5)0.005(m)
R ——— TN
0.5537x10""(m"/s)
ComputeL;, and L, using (6.5) and (6.6)
L,

=1806, laminar flow

=C,Re) (6.5)

e

%p = C,PrRey, (6.6)

C,=0.056 (Table 6.1)
C,=0.043 (Table 6.1)
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L;,=0.056 x 0.005 (m) x 1806 = 0.506 m
L,=0.043 x 0.005 (m) x 1806 x 3.57 = 1.386 m

Is L smaller or larger than L; and L, ?

Compute L using (b). Use (c) to compute m
m = 988(kg/m’) 0.2(m/s) 7z (0.005)*(m?)/4 = 0.00388kg/s
Substitute into (b)

_ 0.00388(kg/s) 4182(J/kg—° C)(80 — 20)(°C) _

L 3 4 7. 2 =10.33m
0.005(m) 0.6 (W/em?)10* (cm?/m?)
L is larger than both L, and L, .
Flow is fully developed at the outlet
23
Equation (A) is applicable
hD
Nuy, = i 4.364 (A)
(iii) Computations. Apply (A)
0
h(L) = 4364 2O4OSWVM="C) _ Sy Wimtoc
0.005(m)
Use (e)
T,(L)=20"Cc+ 6000(W/m w0.005(mp0.43m)__ 12
0.00388(kis)4182(Ke-"C) 559(W/mi —° C)

T,(L)= 90.7°C
(iv) Checking. Dimensional check:

Quantitative checks: (1) Alternate approach: a ly Newton’s law at outlet
pp pp
24




q¢. = nlr(n-1,1] ®
solve for T (L)

a _

2 4 2 2
T(D)=T,, +75=80(C) LO.6(W/em™)x 107 (em™/m”)_

90.7°C
559(W/m2-°C)

(2) Compare value of 4 with Table 1.1
Limiting check: For T,,; =T,,,, L=0.Set T,,; = T,,, in (b) gives L = 0.

(3) Comments.

o In laminar flow local / depends on local flow condition: entrance vs.
fully developed

¢ Check Re), to determine:

(i) If flow is laminar or turbulent
(i) Entrance or fully developed
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6.5 Channels with Uniform Surface Temperature

When surface temperature is uniform,
surface heat flux is variable

o Surface temperature: T,

T,

o Inlet temperature: 7,,; = 7,,(0) e L

7,1 X T,()
e Section length: L —_—

dq

Determine T

T~ >1, + Zm gy
(1) Mean temperature variation 7, (x) " " dx

d

(2) Total heat ¢, . Fig. 6.4

(3) Surface flux variation 4j(x)
Analysis
Apply conservation of energy to element dx
Assumptions
(1) Steady state
(2) No energy generation
(3) Negligible changes in Kinetic and potential energy
(4) No axial conduction
dg,=mc,dT, (a)
Newton's law:

dgq, = h(x)[T, - T,, (x)]Pdx




Combine (a) and (b)

dT,, P (x)dx

Ts_Tm(x):mcl,

W[ P
T,;-T; mc, o

Must determine A(x). Introduce

1
7 =;J‘0 h(x)dx

(6.12) into (6.11)

(©)

Integrate from x=0 (7, =T7,,(0)=T,,) to x (T,, =T,(x))

(6.12)
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Tm(x):Tx +(Tmi _I;)exp[_ﬂx]
mc

P

(6.13) applies to any region and any flow
(laminar, turbulent or mixed)

To determine A(x):
(1) Is flow laminar or turbulent flow?
(2) Entrance or fully developed region?

Total heat: Apply conservation of energy:

q, :mcl,[Tm(x)—Tm,.]

(6.13)

Surface flux: Apply Newton’s law:

4(x)=h()[T, - T, (x)]

Properties: At mean of inlet and outlet temperatures

Example 6.3: Required Tube Length
« Air flows through tube

* Uniform surface temperature,

= r
T, 130°C r T, T
* Mean velocity =2 m/s, I_,
« T,,=35°C uo=x - ;,ﬁ. ..........
* D=1.0cm L

(6.15)

10



* Nusselt number for laminar fully developed flow

Nuy = hTD =3.657 @

Determine: tube length to raise temperature to T,, =105°C

(1) Observations
* Laminar or turbulent flow? Check Re/,
* Uniform surface temperature

* Uniform Nusselt number (4 is constant) for fully
developed laminar flow

* Length of tube is unknown
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(2) Problem Definition. Determine tube length needed to raise
temperature to specified level

(3) Solution Plan.
o Use uniform surface temperature analysis
e Compute Re;. Laminar or turbulent?
(4) Plan Execution

(i) Assumptions
o Steady state
o Fully developed flow

Constant properties

* Uniform surface temperature
« Negligible changes in kinetic and potential energy
» Negligible axial conduction
» Negligible dissipation
(ii) Analysis
Ph
T,,(x) =T, +(T,,; ~ T,)exp[~-———x] ©13)
m L'p
¢ p = specific heat, J/kg—°C
h = average h,W/m?-°C
m=flow rate, kg/s
P=perimeter, m .
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T,(x) = mean temperature at x,’C
T,,; = mean inlet temperature = 35 °C
T, = surface temperature=130°C

x= distance from inlet, m
Apply (a) at the outlet (x= L), solve for L
_m i"l I,-T,;
Ph Ts - Tmo

T,,,= outlet temperature = 105°C

Properties: at 7,
= Tmi + Tmn
2

T,

(@)

(b)
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P=rnD
2
m=xg— pu
4 P
D= inside tube diameter =1 cm = 0.01 m

u = mean flow velocity =2 m/s
p = density, kg/m’
For fully developed laminar flow

Nuy = % =3.657

h= heat transfer coefficient, W/m I_ec

k= thermal conductivity of air, W/m—°C

(©)

@

(e)

h=h=3.657 E, for laminar fully developed
D

Compute: Reynolds number

Rep =2
v
Use (b)
7T 0
T,= 35+ 1(;5)( O_ 70°C
Properties:

¢,=1008.7 J/kg—°C
k=0.02922 Wim-°C
Pr=0.707
v=19.9x10"% m%/s
p=11.0287 kg/m>

(€]

12



Use ()
Rej _ 2(m/s)0.01(m)
19.9x107%(m?¥s)
(iii) Computations
P=70.01(m)=0.03142 m
2 2
me ”(0.01)4 (m”)

=1005, flow is laminar

1.0287(kg/m>)2(m/s) = 0.0001616 kg/s

7 =3.657 0.02922(Wm-"C) _ 1969 w/m2_°C
0.01(m)

Substitute into (a)

1 0-0001616(kg/5)1008.7(/kg = C), | (130=35)(°C) _
0.03142(m)10.69(W/m?=°C)  (130-105)(°C)

37
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(iv) Checking. Dimensional check

ML=0 forT,,=T,;. SetT,,=T,; in (a) givesL=0
(ii)L=o0 forT,, =T,. SetT,, =T, in(a)gives L=
Quantitative checks: (i) Approximate check:

Energy added at the surface = Energy gained by air

Energy added at surface= #zDL(T, —T,,) @)
Energy gained by air = mc,(T,,, —T,,;) [0}
(j) and (k) into (i), solve for L
L:”icp(Tm(} _Zmi) ®
haD(T,-T,)

1 0.0001616(kg/s)1008.7(J/kg—"C)(105-35)(°C)
10.69(W/m?=° Cyr (0.01)(m)(130 - 70)(° C)

=0.57m
(ii) Value of A is low compared with Table 1.1. Review solution,|
Deviation from Table 1.1 are expected

(5) Comments. This problem is simplified by two conditions:
fully developed and laminar flow
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6.6 Determination of Heat Transfer Coefficient

h(x) and Nusselt Number Nu,, r
"
Two Methods: 15
(1) Scale analysis
(2) Analytic or numerical solutions T,
Fig. 6.5

6.6.1 Scale Analysis

Fourier’s law and Newton’s law
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0T,
he or (6.16)
Tm - Tv
40
Scales:
r. 9, (a)
O (ryyx) _ Tw =Ts )
or 9,
(a) and (b) into (6.16)
k (Tm - Ts)
h~ S
Tm - Ts
or
h~ k 6.17)
5!
41
Nusselt number:
hD
Nuy, = "y
(6.17) into the above
D
Nuy ~— (6.18)
up 5[

Entrance region: 5, < D, Nuj > 1
Special case: fully developed region
S,(x)~D

(6.18) gives
Nuy, ~ 1 (fully developed) (6.19)
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&, in the entrance region: For all Pr
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8, ~xPr V2 Re;M? “24)
(4.24) into (6.18)
Nuy ~€Pr”2Rei/2 ©
Express in terms of Re,
Rex=ﬁ—x=@£=ReD£ (@
v v D D
(d) into (c)
D 1/2
Nuy, ~ (—) Pr'Re? (6:202)
X 43
or
Nuy,
m ~1 (6.20b)
(%)

6.6.2 Basic Considerations for the Analytical

Determination of Heat Flux, Heat Transfer

Coefficient and Nusselt Number
(1) Fourier’s law and Newton’s law

o =k or(x,r,)
y or
Define dimensionless variables

g=I=L ,_ xID gt
T,-T, Re,, Pr Ty

V;:vfx- V:=vfr Rep =—
u u

(a)

(6.21)
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(6.21) into (a)

e K 20D
@)= (-1

Newton’s law

W)= -

s

Combine (6.22) and (6.23)

ney= KO=T) 0EN _ k100
T n(T,-T) R 1,6, OR

Dimensionless mean temperatured,,:

Tm_Ts
T}_Iv

6 =

m

(6.22)

(6.23)

(6.24)

(6.25)
46
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Nusselt number:

WED _ h€)2r,

Nu(§) = X ’

(6.24) into (6.26)
-2 39,1

N&=0 & or

Determine: 45 (&), h(£) and: Nu(£)
Find g(&, R)- Apply energy equation
(2) The Energy Equation

Assumptions

* Steady state

(6.26)

(6.27)

* Laminar flow

* Axisymmetric

Negligible gravity

Negligible dissipation
» Negligible changes in Kinetic and potential energy

» Constant properties

[ oTr oT ar] 16( BTJ oT
pe,|v,—+—+v,— |=k|———|r— |+
Tor 00 “or ror\' or) a7%

Replace zby x, express in dimensionless form

.00 .80 46( ae] 1 89
£ RZ |+

Vi—+2Re,Prv, —=—— —_—
& OR ROR (RepPr)” 0&

oR

(2.24)

6.2
48

8)

16



4/12/2020

Pe=Re,Pr, Peclet number 229
* Third term: radial conduction
* Fourth term: axial conduction
* Neglect axial conduction for:
Pe = PrRe;, 2100 (6.30)
Simplify (6.28)
«00 «00 4 0( 06
v.—+2RepPrv, —=——| R— 6.3
xog TRtV aR RBR( 6RJ 3
(3) Mean (Bulk) Temperature T,
Need a reference local temperature. Use T,,(x)
49
ro
me,T, = -“o pepy T2mrdr (a)
where
o
m =j.0 pv 2mrdr (b)
(b) into (a), assume constant properties
I to
v, Trdr
T, = - x (6.32a)
j.o v rdr
In dimensionless form: .
“ORdR
T, -T, Y
G, ="1—5= I" (6.32)

T T, L
i— T j'ovadR

50

Developed Temperature Region

Profile
Fully developed temperature:
_TL(x)-T(r,x)
A
Let
x/d>0.05Re, Pr

Definition:

6.7 Heat Transfer Coefficient in the Fully

¢ is independent of x

For fully developed temperature

6.7.1 Definition of Fully Developed Temperature

(6.33)

17
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Therefore
6=0(r) (6.34)
From (6.34)
o4 -0 (6.35)
ox
(6.33) and (6.35):
0p 0 |T(x)-T(r,x)
— === (6.362)
ox  ox| T (x)-T,(x)
Expand and use (6.33)
a1, _oT _ ,.)|:de _ﬂ] =0 (6.36b)
dx Ox dx dx
52
6.7.2 Heat Transfer coefficient and Nusselt number
0T, %)
he or (6.16)
Tm - Tv
Use(6.33) to form 07 (r,,x)/0r, substitute into (6.16)
do(r,) 637

h=—-k—2*
dr

Conclusion:

The heat transfer coefficient in the fully developed region
is constant regardless of boundary condition

Nusselt number:

NuD=h£=_DM (6.38)
h dr

Entrance region scaling result:
Nuj ~1 (fully developed) (6.19)

Scaling of fully developed region:

scale for 0T (r,,x)/Or
oT(,x) _1,-T,
or D
Substitute into (6.16)
h~ E 6.39)
D 54

18



(6.39) into (6.38)

Nup ~1 (fully developed) (6.40)

6.7.3 Fully Developed Region for Tubes at
Uniform Surface flux
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r
¢ Uniform flux v v v v v v v v sy ,
+ Determine ) o Li r-— }/\\1\)\\%
—> b AN \ T/
: A
* T(x) A N e
e h qs
Newton’s law: Fig. 6.6
¢% = h[T,(x)~T,(x)] L@
T,(x)and 7,,(x) are unknown
¢ and A are constant
(a) gives:
[7,(x)-T,,(x)] = constant ®)
Differentiate (b)
dT, dT,
=0 (©)
dx dx
(c) into (6.36b)
or dT,
PV @
ox dx
Combine (¢) and (d)
OT _dT, _dT, (for constant 47) (sa1)
ox dx  dx

56

To determine 4 form (6.16) :
Determine: T(r,r), T, (x) and T;(x)

Conservation of energy for dx

dT,
q(Pdx +mc,T,, = mcp|:Tm +Kmdxi|

Simplif
ALY T, q"P
K =~ =constant (6.42)
me
(6.42) into (6.41) s
dT,
" — T,(x) T, +—"dx
a—T = ﬂ = &= M = constant (6.43) uz dx

ax  dx dx me, dx

Fig. 6.7 57
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Conclusion: T (x,r), T, (x) and T, (x) are linear with x
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Integrate(6.43)
1,0=% i c, ©
mcp
C, = constant
Boundary condition:
T, m (0) =T, mi ®
Apply (e) to (f)
G =T,
(e) becomes
T, (x) =T, + 1« ©449)
mc
14 58
Determine T (r,x) and T;(x)
Apply energy equation (2.23) in the fully developed region
Assumptions
« Negligible axial conduction
« Negligible dissipation
* Fully developed, v, =0
or _ko( or
y L2900 (6.45)
PEYx ox r ar[r 6r]
2
Ve= 2ﬁ|:1 - r—z:| (6.46)
rl)
59
However
m=x r”2 pu
P=2zxr,
equation (g) becomes
” 2
445 1-2 = ko (r ﬂ) (6.47)
r, 2| ror\ or
Boundary conditions:
oT1(0,x) -0 (6.482)
or
i oT(r,5x) _ p (6.48b)
Integrate (6.47) 5 ajr
Lol ke p() ®
r, B 2 4 or 60
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f(x) =“constant” of integration
Boundary condition (6.48a)
f(x)=0

or _4qi|r_r
or kr,|2 ar?

(h) becomes

Integrate

aq" |2
T(r,x)=§[7—ﬁ}+g(x)
o o

8(x) = “constant” of integration
e Boundary condition (6.48b) is satisfied

e Use solution to 7, (x) to determineg(x)

(6.49)
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Substitute(6.46) and (6.49) into (6.32a)
7 rqt

T,(x)=—""+g(x

(%) 2 & 8(x)

Two equations for 7,,(x) : (6.44) and (6.50). Equating
g =T, - L1 PO
24 k mc,

(6.51) into (6.49)

(6.50)

(6.51)

” 2 3 ” ”
T(r,x)=T,; + 44 |:r— - r—] _ T ns + ix (6.52)

kr,| 4 16r2| 24 k me,

Surface temperature 7,(x): set r = r, in (6.52)

n n
T,(x) = Ty + M lofls y PAe
’ 24 k mc,

T(r,x), T,,(x) and T;(x) are determined

(6.44), (6.52) and (6.53) into (6.33)
241[r2 r4] 4P 7

2
4r,

=1-22 + =
PO=1-4 Tme, 11"

Differentiate(6.54) and use (6.38)

48
Nuy, = Tl =4.364, laminar fully developed

(6.53)

(6.54)

(6.55)
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Comments:
* (6.55) applies to:

* Laminar flow in tubes

* Fully developed velocity and temperature

* Uniform surface heat flux

* Nusselt number is independent of Reynolds and Prandtl
numbers

* Scaling result:

Nup ~1 (6.40)

6.7.4 Fully Developed Region for Tubes at
Uniform Surface Temperature

* Fully developed

* Uniform surface temperature 7,

Determine: Vu ;, and A

Assumptions:

* Neglect axial conduction
« Neglect dissipation

* Fully developed: v, =0

Energy equation (2.24):
oT _kof oT
ey —=——|r— (6.45)
P ox r ar( or J 65
Boundary conditions:
oT(0,x) _ 0 (6.562)
or
T(r,,x)=T, (6.56b)
Axial velocity
2
v,= 2ﬁ|:1 - r—zi| (6.46)
rﬂ

Eliminate 87 /9x in equation (6.45). Use (6.36a)

¢ ZQ[M] 0 @3

ox ox| T, (x)-T,(x)

22



for7,(x) =T, (6.36a) gives
or _T,-T(r,x)dT,,
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(6.57)
ox T,-T,(x) dx
(6.46) and (6.57) into (6.45)
,,cpﬁ[l_% wfﬂ:fz[ﬂ) 638
v |T,~T,(x) dx ror\_ or
Result: Solution to (6.58) by infinite power series:
Nuj, =3.657 (6.59)
67
6.7.5 Nusselt Number for Laminar Fully
Developed Velocity and Temperature
in Channels of Various Cross Sections
* Analytical and numerical solutions
* Results for two classes of boundary conditions:
(1)Uniform surface flux
(2)Uniform surface temperature
* Nusselt number is based on the equivalent diameter
D =4ﬂ (6.60)
P
* Results: Table 6.2
68
Table 6.2
Nusselt for 1 fully developed conditions in
channels of various cross-sections [3]
@ Nusselt number N1t ;,
CHETE] — | Uniform surface | Uniform surface
geametey b flux temperature
O 4.364 3.657
o0 1 3.608 2976
[ 3 4.123 3391
= 4 5331 4439
—— | 8 649 5597
— | 8.235 7.541
A 3.102 246
69
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¢ Compare with scaling
Nup ~1 (fully developed) (6.40)
Example 6.4: Maximum Surface Temperature

in an Air Duct

* 4 cmx 4 cm square duct
« Uniform heat flux = 590 W/m* ) »

* Heating air from 40°C to 120°C
< W =032m/s i
« No entrance effects (fully developed)

4/12/2020

Determine: Maximum surface temperature
(1) Observations

* Uniform surface flux

* Variable Surface temperature, 7, (x), maximum at outlet
« Compute the Reynolds number

* Velocity and temperature are fully developed

* The heat transfer coefficient is uniform for fully developed
flow

¢ Duct length is unknown
e The fluid is air

(2) Problem Definition
(i) Find the required length
(ii) Determine surface temperature at outlet
(3) Solution Plan
(i) Apply conservation of energy
(ii) Compute the Reynolds
(iii) Apply constant surface solution
(iv) Use Table 6.2 for A
(4) Plan Execution
(i) Assumptions

« Steady state
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* Constant properties

* Uniform surface flux

* Negligible changes in kinetic and potential energy
« Negligible axial conduction

« Negligible dissipation
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(ii) Analysis
Conservation of energy
PLqg{=mc,(T,,-T,;) ()
¢, = specific heat, J/kg—"C
L = channel length, m
m = mass flow rate, kg/s N
P = perimeter, m
4+ = surface heat flux = 590 W/m?
Tmi =40°C
T,, =120°C
Solve (a) for L
I m",,(Tmo —T,.) )
Pq"
Find m and P
m=pS*u ©
P=4S ()
§ = duct side = 0.04 m
u = mean flow velocity = 0.32 m/s 74
p = density, kg/m3
(c) and (d) into (b)
L= pSEcp(Tmo_Tmi) (e)
44"
Surface temperature: Use solution (6.10)
S Px 1
I,(x) =T, + q{%+ ] ®

e, h(x)
h(x)=local heat transfer coefficient, W/m?-°C
T,(x) = local surface temperature,” C

x = distance from inlet, m
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Maximum surface temperature at x= L

4L 1
T(L)=T, + q; | ——+——
s( ) mi qs [ps 0 C[, h(L)] (@
Determine /#(L): Compute the Reynolds number

uD, 0]

Re), =
D, = equivalent diameter, m

. e 2
v = kinematic viscosity,m"/s

2 -
p=44_5" -5 ®
P 45
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(i) into (h)
Rep, = us @
v
Properties: At 7,

T, =Tui+Tuo ®

— o
T, =W=800C

Properties:

¢,=1009.5 J/kg-°C

k=0.02991W/m-°C

Pr=0.706 ”

v=20.92x10"° m?/s

P =0.9996 kg/m3

(j) gives

_ 0.32(m/s)0.04(m)

2 =6119, laminar flow
20.92x10~%(m?/s)

€De

(6.55) and Table 6.2
Niupe = " Pe - 3,608 o
k

h = 3.608i (m)
D

e
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(iii) Computations. Use (e)

. 0.9996(ke/m” ) 0.04(m)0.32(m’s) 1009.5(/kg-° C)(120 — 40)(° C)

3 =0.4378 M
(4)590(W/m~)

Use (m)

_ _0

L) =T = 3.608 2221 WVIM="C) _, o wm?_oc
0.04(m)
Substitute into (g)
T,(L)=40"C)+
s 4(0.4378)(m) 1
590(W/m?) +
0.9996(kg/m > ) 0.04(m)0.32 (m/s) 1009.5(J/kg—=°C) 2. 7(W/m%=°C)

79
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T,(L) = 338.5°C
(iv) Checking. Dimensional check:
Quantitative checks: (1) Alternate approach to determining :

Newton’s law at outlet
qy =h|T(L)-T,,] @

T, (L) Solve for
590(W/m?)

_ 0
—— 2 _338.5°C
2.7(W/m>="C)

T,(D)=T,, =1L = 12000)+
h

(2) Compare h with Table 1.1

Limiting check: L=0 forT,,, =T,,;.SetT,, =T,
into (e) gives L=10 80

(5) Comments

(i) Maximum surface temperature is determined by the
heat transfer coefficient at outlet
(ii) Compute the Reynolds number to establish if the flow
is laminar or turbulent and if it is developing or fully
developed
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6.8 Thermal Entrance Region: Laminar Flow
Through Tubes

6.8.1 Uniform Surface Temperature:
Graetz Solution

« Laminar flow through tube

* Velocity is fully developed

¢ Temperature is developing

« No axial conduction (Pe > 100)

* Uniform surface temperature 7 Fig.6.8

Velocity:

(3.12)

Rewrite (3.1)

— 2[1 _RZ] (6.61)

(3.1) and (6.61) into (6.31)

1, .00 10(,00 662
“{1-R = R— (6.62)
2( )E ( J

RoR\" 3R

Boundary conditions:
2060 _,
oR

o n=0
00, R)=1 8

Solution summary: Assume a product solutions
0. R) =X (R (R) @
(a) into (6.62), separating variables

LT 242X, =0 ®)
d¢

AR, 1dR
R A ROR, =0 ©

« A,= eigenvalues obtained from the boundary conditions

+ SolutionX , (£) to (b) is exponential

«+ Solution R ,(R) to (c) is not available in terms of
simple tabulated functions 84
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Solutions to (b) and (c) into (a)

a(f,R)=f)C"R,,(R)exp(—ui:) ©.64)

n=0

C,, = constant

Surface flux:

4/12/2020

" k 06,1
=—(T.-T, (6.22)
€@= -1
(6.64) gives
3¢ _s - 4R, (D) 2
=>C =~ exp(-24 @
o ;} R, P
Define
G =_&M (@]
" 2 dR 85
(e) into (6.22)
" 2k < 2
=2 -1 = 6.65
016 = = (1T G ew(240) (©69)
Local Nusselt number: is given by
Nu(&) = ;ZM 6.27)
9,(&) OR
(d) gives96(&,1)/ R
Mean temperatured,, (£): (6.61) and (6.64) into (6.32b),
integrate by parts and use(e)
A 2
0,.(&)= SZFeXp(—2ﬂn§ ) (6.66)
n=0""n
86
(d), (e) and (6.66) into (6.27)
.G, exp(-24,£) 687
Nug)=
zzol—;exm—uié)
Average Nusselt number: For length x
Nu(g) ="€2 o

k
Two methods for determining h £):
(1) Integrate local h(£) to obtain /i (&)
(2) Use (6.13)
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T, (x)=T,+(T; =T, exp[- P x] (6.13)
m L'l,
Solve forz
[ SN PLC) kY ©
Px T,-T,
(g) into (f), use m = piiz D* /4 P = D and definitions of
&, Rep and €, in (6.21) and (6.25)
— 1
Nu(@)=——-1n6,,(£) 6%
4

* Need4, and G, to compute ¢5(£),6,,(£), Nu(&)and Nu (&
* Table 6.3 gives 4, and G,
* (6.67) and (6.68) are plotted in Fig. 6.9 as Nu(&) and F@g)
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Table 6.4
g Table 6.3 Local and average Nusselt number for
Uniform surface temperature [4] tube at uniform surface temperature [5]
ﬂ’n Gn o =
0| 2.70436 | 0.74877 £ oD | Nu(G) | mue)
1| 6.67903 0.54383 Rep, Pr
2 | 10.67338 0.46286 0 fe'e) fe'e)
3 | 14.67108 0.41542 0.0005 12.8 19.29
4 | 18.66987 0.38292 0.002 8.03 12.09
5 | 22.66914 0.35869 0.005 6.00 8.92
6 | 26.66866 0.33962 0.02 4.17 5.81
7 | 30.66832 0.32406 0.04 3.77 4.86
8 | 34.66807 0.31101 0.05 3.71 4.64
9 | 38.66788 0.29984 0.1 3.66 4.15
10 | 42.66773 0.29012 [e'e) 3.66 3.66
89
10°
E Average Nu
I I (R (S Local Nu
102

Nusselt number

103 10
,_ xID
B RepPr
Fig, 6.9 Local and average Nusselt number for
tube at uniform surface temepratu re[4]
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Comments

(1) ‘Nup and Nuy, decrease with distance from entrance

(2) At any location & Nup > Nuy,

(3) Asymptotic value (at £ » 0.05 ) for Nup and Nuy,
is 3.657. Same result of fully develop analysis

Nu() = 3.657 (6.69)
(4) Properties at
T, = Li+ 1o (6.70)
2

(5) Solution by trial and error if T, is to be determined

4/12/2020

Example 6.5: Hot Water Heater
* Fully developed velocity in tube

* Developing temperature
 Uniform inlet temperature 7; = 25°C
* Diameter = 1.5 cm
¢ Length= 80 cm

* Flow rate = 0.002 kg/s u
« Heat water to 75°C

Determine: Surface temperature

(1) Observations
* Uniform surface temperature

» Compute Reynolds number: Laminar or turbulent flow?

* Compute L, and L, : Can they be neglected?
(2) Problem Definition

(i) Determine 7
(ii) Determine A
(3) Solution Plan
(i) Apply uniform surface temperature results

(ii) Compute the Reynolds number: Establish if problem is
entrance or fully developed

(iii) Use appropriate results for Nusselt number
(4) Plan Execution
(i) Assumptions

* Steady state 9
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* Constant properties
* Uniform surface temperature

* Negligible changes in kinetic and
potential energy
» Negligible axial conduction

* Negligible dissipation

(ii) Analysis
Uniform surface temperature
Ty () =T, + (T = T) b= ]
mc,

) = average heat transfer coefficient, W/m?-°C
m = flow rate =0.002kg/s

(6.13)
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T,; =mean inlet temperature=25°C

T,, =mean outlet temperature-75°C
Apply (6.13) at outlet (x= L) and solve for T

1

T,=————|T,. =T, (L)exp(Ph L/ mc
s 1—exp(PhL/mcp)[ mi m (L) exp( m‘-p)]

Properties: at 7,

Tm _ Tmi + Tm,)
2
Perimeter P
P=zD

D= diameter = 1.5 cm = 0.015 m

(@)

Determine /; : Compute the Reynolds

ReD:Q
v
_ 4m
u= 3
prD

Properties: at7,,

T, = (20+80)(°C)
2

=50°C
¢,= 4182 J/kg-°C

k = 0.6405 W/m-"C

Pr=357

v =0.5537x10-6 ni’/s

(e
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p =988 kg/m3

Use (e)
4(0.002)(kg/s)
988(kg/m>) 7 (0.015)*(m?)

= =0.01146 m/s
Use (d) gives
_ 0.01146(m/5)0.015(m) _, o o

6,2 , laminar flow
0.5537x107" (m*/s)

€p

Determine L, and L,

L
3" =C,Re, ©5)
L (6.6)
3’ =C,PrRe,,
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C,= 0.056 (Table 6.1)

C, =0.033 (Table 6.1)
(6.5) and (6.6)

L, =0.056 x 0.015 (m) x 310.5 = 0.26 m
L,=0.033 x 0.015 (m) x 310.5 x 3.57 = 0.55m

* L, and L, are not negligible, tube length L= 0.8 m
« Use Graetz solution Fig. 6.9 or Table 6.4

Compute &
= x/D ®
Re, Pr
98
Nusselt number Nu gives i
=X N ®
D

(iii) Computation. Evaluating £ at x= L

£ = OBEDOISm) o 040y
310.5x3.57

At £ =0.481 Fig. 6.9 gives
Num4.6

Substitute into (g)

_ 0.6405(W/m—

o
©) 4.6=196.4W/m2-°C
0.015(m) 9

=
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Equation (a) gives T,
Compute the exponent of the exponential in (a)

7 2 o
PRL _ 7 (0.015)(m)(196.4(W/m°—"C)0.8(m) _ \ cocr s
me, 0.002(kg/s)4182(J/kg—"C)

Substitute into (a)

7,=— L D5 C)-75(°Chexp(0.88524)|=110.1°C
s 1—exp(0.88524)[ CO=75COpexp( J

(iv) Checking. Dimensional check:
Limiting checks:
(i) ForT,,; =T(L) (no heating) 7 should be equal to 7,,; .
Set 7, =T (L) in (a) gives T, =T,,;

100
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(ii) If L= 0, T should be infinite. Set in L= 0 (a) givesT, =
Quantitative checks:
(i) Approximate check:

Energy added at the surface = Energy gained by water (h)
Let

T,, = average water temperature in tube
Energy added at surface= DL(T, - T"m) @)
Energy gained by water =mc,(T,,, - T,,;) @
(j) and (k) into (i), solve for T

101

m C,,(Tma -T,)

T,=T, + —
hrm DL

K m

(k)
(k) gives
0.002(kg/s)4182(J/kg—"C)(75— 25)(°C) _

T, =50(°C) + : =106.5°C
196.4(W/m?=°C)r (0.0155(m)(0.8)(m)

(ii) Compare computed 7 with Table 1.1

(5) Comments
* Small error is due to reading Fig. 6.9
* Fully developed temperature model:

Nup =3.657, gives i =156.3W/m2-°C 102
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6.8.2 Uniform Surface Heat Flux

* Repeat Graetz entrance problem with uniform
surface heat

* Fully developed inlet velocity

« Laminar flow through tube

« Temperature is developing

« No axial conduction (Pe > 100)
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R
T b L
Energy equation: Same as u) o ~
for Graetz problem il
Fig. 6.10
103
1 208 1 8 ( 08
—\1-R =——|R 6.62
2( )ﬁ RaR( aRJ o
Boundary conditions:
06,0
i 2ALA YY) (6.71a)
R )
06 "
& _ i, 6t
R KT,-T,)
6(0,R)=1 6.71c)
Analytic solutions: Based on separation of variables
(1) Local Nusselt number
104
e 1118 B
X
Ni =—=|—-=) A,exp(-25,
u($) A [48 2; [, exp( ﬂné):| 6.72)

Table 6.6 lists eigenvalues 8, and constant A,

(2) Average Nusselt number

Nacer o _[ 1113 1-exp(-25,6)
M= _[48 DI

Limiting case:
Fully developed: Set& = (6.72) or (6.73)
-1
Nu(w) = (EJ =4.364
48

Same as fully developed result (6.55).

-1
] (6.73)

(6.74)

105
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Graphical results: Fig. 6.11

Table 6.5
Uniform surface flux [4]
S A,
1| 25679 0.198722
2 | 838618 0.069257
3 | 174.1667 0.036521
4 | 2965363 0.023014
5 | 450.9472 0.016030
6 637.3874 0.011906
7 | 855.8495 0.009249
8 | 11063290 |  0.007427
9 | 13888226 | 0.006117
10 | 17033279 [  0.005141
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Nusselt number

10?

Average Nu

----- Local Nu

L i L u sl il
6 10°5 104 107 102 10! 100
£= x/D
RepPr

Fig. 6.11 Local and average Nusselt number for

tube at uniform surface heat flux [4]
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