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CHAPTER 6

HEAT TRANSFER IN CHANNEL FLOW

6.1 Introduction

(1)  Laminar vs. turbulent flow

transition Reynolds number tDRe is 

2300

Du

Re
tD                                   (6.1) 

where
D tube diameter
u mean velocity
 kinematic viscosity

 Important factors: 

2

(2) Entrance vs. fully developed region  

Based on velocity and temperature distribution: two regions: 
(i)  Entrance region

(ii) Fully developed region

(3) Surface boundary conditions

Two common thermal boundary conditions: 
(i)  Uniform surface temperature
(ii) Uniform surface heat flux 

(4)  Objective

Depends on the thermal boundary condition: 
(i) Uniform surface temperature. Determine: axial variation of

(1) Mean fluid temperature 
(2) Heat transfer coefficient
(3) Surface heat flux
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(ii) Uniform surface flux. Determine axial variation of:

(1) Mean fluid temperature 

(2) Heat transfer coefficient

(3) Surface temperature

6.2 Hydrodynamic and Thermal Regions: General Features

6.1 Fig.

developed fully

xiV

hL


cu
u

r

6.2.1 Velocity Field

• Developing boundary velocity and thermal boundary layers 

• Two regions: 

(1) Entrance region 

(2) Fully developed region 

 Uniform inlet velocity iV  and temperature iT   

(1) Entrance Region (Developing Flow,   
   hLx 0 ) 



4/12/2020

2

4

6.1 Fig.

developed fully

xiV

hL


cu
u

r

(2) Fully Developed Flow Region

:  h
Lx > fully developed flow

Length hL :  hydrodynamic entrance length  

Streamlines are not parallel )0rv(   

(increasing or decreasing with x?) 

 Pressure )( xpp  , ( 0/ dxdp ) 

 2/D   

• Hydrodynamic entrance region

Core velocity )( xuu cc    

Streamlines are parallel )0
r

v(
- rFor 2 D, constant : 0/ xu  
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6.2.2 Temperature Field

Entrance Region (Developing 
Temperature, tLx 0 ): 

 Thermal entrance region
r

iT

T

x
iV

t

tL

sT

6.2 Fig.

cT sT

fully
 developed

Length tL : Thermal entrance length 

Core temperature cT  is uniform 

   ( ic TT  ) 

2/Dt 

(2) Fully Developed Temperature Region 

 tLx   fully developed temperature 

 ),( xrTT   or  0/  xT  

 Dimensionless temperature  is invariant with x ( 0/  x ) 
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6.3 Hydrodynamic and Thermal Entrance Lengths

hL  and tL  are determined by: 

(1) Scale analysis

(2) Analytic or numerical methods 

6.3.1 Scale Analysis

(1) Hydrodynamic Entrance Length hL  

Scaling of  external flow:  

xRex

1



                 (4.16) 

6.1 Fig.

developed fully

xiV

hL


cu
u

r

hLh ReL

D 1
                 (a) 

Apply (4.16) to flow in tube: at hLx  ,  

D  
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Express 
hLRe  in terms DRe  

(b) into (a)

(2) Thermal Entrance Length tL   

Scale for u: u~u (all Prandtl numbers)  
Scale of t : For external flow 

Apply (4.24) for flow in tube: tLL  , Dt   

D
L

Re
D
L

v
Du

v
Lu

Re h
D

hh
Lh



1/21/2~
-- PrReL Lt (4.24)

1/21/2~
-- PrReLD tt (a)

(6.2)1~
/

2/1










D

h

Re

DL
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Express 
tLRe  in terms DRe  

(b) into (a)

6.3.2 Analytic/Numerical Solutions: Laminar Flow

(1) Hydrodynamic Entrance Length hL   

D
L

Re
D
L

v
Du

v
Lu

Re t
D

tt
Lt

 (b)

Pr
L
L

h

t ~ (6.4)

Dh
e

h ReC
D
L  (6.5)

(6.3)1~
/

1/2









PrRe

DL

D

t
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e
D = equivalent diameter 

P

A
D f

e
4



f
A = flow area 

P = perimeter 

h
C = coefficient Table 6.1 

Compare with scaling:

Rewrite (6.5) 

1~
/

2/1










D

h

Re

DL
        (6.2) 

 1/2
1/2

/
h

D

h C
Re

DL









     (a) 

Table 6.1 
Entrance length coefficients             and             [1] 

   

         Geometry  Uniform 
surface 

flux 

Uniform surface 
temperature 

 0.056 0.043 0.033 

 0.090 0.066 0.041 

 0.085 0.057 0.049 

 0.075 0.042 0.054 

 0.011 0.012 0.008 

 

a
b

b
a

b
a

2

4

hC tC

hC tC
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Example: Rectangular channel, ,2/ ba , Table 6.1 gives 085.0hC   
Substitute into (a) 

(2) Thermal Entrance Length tL  

tC  is given in Table 6.1  

Compare with scaling  

Rewrite (6.6):  

Dt
e

t PrReC
D
L  (6.6)

(6.3)1~
/

1/2









PrRe

DL

D

t

(b)  29.0085.0
/ 2/1

2/1










D

h

Re

DL
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Example: Rectangular channel, ,2/ ba , Table 6.1 gives 049.0tC  gives 

Turbulent flow: Experimental results:  
 hL  and tL  are shorter than in laminar flow 

Rule of thumb : 

6010 
D

Ln (6.7a)

10040 
D

L
n (6.7b)

(b)1/2
1/2

/
t

D

t C
PrRe

DL










(c)  22.0049.0
/ 2/1

1/2









PrRe
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D
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 Surface temperature is variable
When surface heat flux is uniform

x

6.3 Fig.

)(xTmmiT

sq 

L

Section length L 

Surface flux sq   

Determine: 

(1) Total heat transfer  

(2)  Mean temperature variation )(xTm  

(3)  Surface temperature variation )( xTs  

Inlet temperature: )0(mmi TT    

6.4 Channels with Uniform Surface Heat Flux    sq   
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(1) Steady state 

(2) No energy generation

(3) Negligible changes in kinetic and potential energy 

(4) No axial conduction

sA = surface area  

P = perimeter  

Conservation of energy:  

Assumptions: 

])([ mimpss TxTcmxPqq -

or

    m  = mass flow rate  

Total heat: 
xPqAqq ssss

 (6.8)

x
cm
Pq

TxT
p

s
mim


+)( (6.9)

14

    pc = specific heat 

(6.9) applies to any region and any flow
(laminar, turbulent or mixed)

Use heat transfer analysis to determine
surface temperature )(xsT

Newton’s law of cooling

 )()()( xTxTxhq mss -

Solve for )( xTs  

)(
)()(

xh

q
xTxT s

ms


+

Use (6.9) to eliminate )( xTm  

15









++

)(
1

)(
xhcm

Px
qTxT

p
sims                            (6.10) 

)( xsTh(x) is needed in (6.10) to determine

(1) Laminar or turbulent flow?
To determine h(x):

(2) Entrance or fully developed region?

Example 6.2: Maximum Surface Temperature

Water flows through tube 

Mean velocity = 0.2 m/s 

 miT C20o
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 Tmo = C80o
 

0

sq 

)( xTmx

)(xTs

L
sq 

DmiTD = 0.5 cm   

 Uniform surface heat flux = 
       0.6 W/cm2

 

Fully developed flow at outlet  

Nusselt number for laminar fully developed flow  

Determine the maximum surface temperature 

(1) Observations

Uniform surface flux  

 )(xTT ss  , maximum at the outlet  

364.4
k

hD
NuD (A) 
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Laminar or turbulent flow? Check DRe   

 Is outlet fully developed? Check  hL  and   tL  

Uniform Nusselt number (h is constant) 

Length of tube section is unknown  

(i) Determine   L  

(ii) Determine )(LTs  

(3) Solution Plan 

 (i) Apply conservation of energy  

 (ii)  Compute DRe  

(iii) Calculate hL  and tL  

(iv) Apply uniform flux analysis 

 ( v ) If applicable use (A) to determine h  

(2) Problem Definition

18

(4) Plan Execution

 Steady state

 Constant properties

Axisymmetric flow

 Uniform surface heat flux

 Negligible changes in kinetic and potential energy

 Negligible axial conduction 

 Negligible dissipation

(ii) Analysis

Conservation of energy:

(i) Assumptions

)( mimop TTmcqDL "
s -p (a)
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pc  = specific heat, J/kg-oC 

D  = tube diameter = 0.5 cm = 0.005 m 

L  = tube length, m     

m= mass flow rate, kg/s 

     miT  = mean temperature at the inlet = 20oC 

moT  = mean temperature at the outlet = 80oC 

sq  = surface heat flux = 0.6 W/cm2 = 6000 W/m2 

From (a) 

Conservation of mass:

where

L =  

s

mimop

qD

TTmc

-

p
)(

(b)

uDm rp 2)4/( (c) 

20

    u = mean flow velocity = 0.2 m/s 
    r = density, kg/m3 

Surface temperature: Apply (6.10)

    h =  local heat transfer coefficient, W/m2-oC 

    P = tube perimeter, m 

    )(xTs = local surface temperature, oC 

    x = distance from inlet of heated section, m 

Perimeter P:

Maximum surface temperature: set x = L in (6.10)









++

)(
1

)(
xhcm

PxqTxT
p

sims (6.10)

P = p D (d)
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Determine h(L):  Is flow laminar or turbulent? Compute DRe  

 T  = C50
2

)C)(8020( o
o


+

 

For water:

    k = 0.6405 W/m-oC 

Properties mT  

    pc = 4182 J/kg-oC 









++

)(
1

)(
Lhcm

LPqTLT
p

sims (e)


Du

ReD
 (f)

mT = 
2

momi TT +
(g)



4/12/2020

8

22

    Pr = 3.57 

      = 0.553710
-6 m2/s  

    r  = 988 kg/m
3
 

Use (g)

 ReD 1806
/s)(m100.5537

005(m)0.2(m/s)0.
26




 - ,  laminar flow 

Compute hL  and tL  using (6.5) and (6.6) 

    hC = 0.056 (Table 6.1) 

    tC = 0.043 (Table 6.1) 

Dh
e

h ReC
D
L  (6.5)

Dt
e

t PrReC
D
L  (6.6)

23

    hL = 0.056   0.005 (m)   1806 = 0.506 m 

    tL = 0.043  0.005 (m)  1806  3.57 =  1.386 m 

Is L smaller or larger than hL and tL ?

Compute L using (b). Use (c) to compute m

 m = 988(kg/m3) 0.2(m/s)p (0.005)2(m2)/4 = 0.00388kg/s 

 L =  
)/m(cm)10(W/cm 0.6 0.005(m)

C)20)(C)(804182(J/kg/s)0.00388(kg
2242

oo --
 = 10.33 m 

Flow is fully developed at the outlet

L is larger than both hL and tL .

Substitute into (b)

24

Equation (A) is applicable

(iii) Computations. Apply (A)

h(L) = 4.364 
0.005(m)

C)0.6405(W/m o-
 = 559 W/m2-oC 

Use  (e) 

C7.90)( oLTs

(iv) Checking. Dimensional check: 

Quantitative checks: (1) Alternate approach: apply Newton’s law at outlet  









+

--
+

C)
o2

559(W/m

1

C)
o

kg/s)4182(J/0.00388(kg

10.43(m)0.005(m)π
)

2
6000(W/mC

o
20)(LTs

k
hD

NuD
 =  4.364                                        (A)
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solve for )(LTs  

h

q
TLT s

mos


+)( = 80 (oC) +

C)559(W/m

)/m(cm10)0.6(W/cm
o2

2242

-


= 90.7oC  

(2) Compare value of  h with Table 1.1 

Limiting check: For momi TT  ,  L = 0. Set momi TT   in (b) gives L = 0.  

(3) Comments. 

 In laminar flow local h depends on local flow condition: entrance vs.                             
fully developed

Check DRe  to determine:  

(i)  If flow is laminar or turbulent
(ii) Entrance or fully developed 

 moss TLTLhq - )()( (i)

26

6.5 Channels with Uniform Surface Temperature

When surface temperature is uniform,
surface heat flux is variable

 Inlet temperature: )0(mmi TT 
x )( xTmmiT

m

 6.4 Fig.

dx

sT

mT dx
dx

dT
T m

m +

dx

sdq

sT Surface temperature:

 Section length: L

Determine

(2) Total heat sq

(1) Mean temperature variation )( xTm

27

(3) Surface flux variation )(xqs

Analysis

Apply conservation of energy to element dx

Assumptions

(4) No axial conduction

(1) Steady state

(2) No energy generation

(3)  Negligible changes in kinetic and potential energy

mps dTcmdq  (a)

Newton's law:

 PdxxTTxhdq mss )()( -
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Combine (a) and (b)

dxxh
cm

P
xTT

dT

pms

m )(
)(


-
(c)

Integrate from x = 0 ( mimm TTT  )0( ) to x ( )(xTT mm  )

-







-
- x

psmi

sm dxxh
cm

P
TT

TxT

0
)(

)(
ln

Must determine h(x). Introduce h


x

dxxh
x

h
0

)(
1 (6.12)

(6.12) into (6.11)
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][exp)()( x
cm
hP

TTTxT
p

smism --+ (6.13)

 (6.13) applies to any region and any flow
(laminar, turbulent or mixed)

To determine h(x):
(1) Is  flow laminar or turbulent  flow?
(2) Entrance or fully developed region?

Total heat: Apply conservation of energy:

])([ mimps TxTcmq -

30

Surface flux: Apply Newton’s law:

)]()[()( xTTxhxq mss - (6.15)

Properties: At mean of inlet and outlet temperatures

Example 6.3: Required Tube Length

x

L

D

sT

u
u

r
sT

0

• Air flows through tube

• Uniform surface temperature,
sT C301 o

• Mean velocity = 2 m/s,

• D = 1.0 cm

miT C35o•
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• Nusselt number for laminar fully developed flow

657.3
k

hD
NuD

(A)

Determine: tube length to raise temperature to moT C051 o

(1)   Observations

• Length of tube is unknown 

DRe• Laminar or turbulent flow? Check

• Uniform surface temperature

• Uniform Nusselt number (h is constant) for fully
developed laminar flow

32

(2) Problem Definition.  Determine tube length needed to raise 
temperature to specified level

(3) Solution Plan.

 Use uniform surface temperature analysis

 Compute  DRe .  Laminar or turbulent?

(4)   Plan Execution

(i)   Assumptions

 Steady state

 Fully developed flow

 Constant properties

33

• Negligible dissipation

• Uniform surface temperature

• Negligible changes in kinetic and potential energy

• Negligible axial conduction

(ii) Analysis

][exp)()( x
cm
hP

TTTxT
p

smism --+ (6.13)

pc = specific heat, CJ/kg o-

h = average h, CW/m o2 -

m = flow rate, kg/s

P = perimeter, m
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Tm(x) = mean temperature at x, Co

miT = mean inlet temperature = 35 Co

sT = surface temperature = 130 Co

x = distance from inlet, m

Apply (a) at the outlet (x = L), solve for L

mos

misp

TT

TT

hP

cm
L

-
-

 ln (a)

moT = outlet temperature = 105 Co

Properties: at mT

mT = 
2

momi TT + (b)

35

D = inside tube diameter = 1 cm = 0.01 m

u = mean flow velocity = 2 m/s

r = density, kg/m3

For fully developed laminar flow

h = heat transfer coefficient, CW/m o2 -

k = thermal conductivity of air CW/m o-,

P = p D (c)

657.3
k

hD
NuD

(e)

u
D

m rp
4

2

 (d)

36

Compute: Reynolds number

Use  (b)

=mT C70
2

)C)(10535( o
o


+

Properties:

pc = 1008.7 CJ/kg o-
02922.0k CW/m o-

Pr 0.707

/sm109.19 26-
3kg/m0287.11r

D

k
hh 657.3 ,  for laminar fully developed (f)


Du

ReD  (g)
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Use (f)

,DRe 1005
/s)(m1019.9

(m)2(m/s)0.01
26





-

flow is laminar

(iii) Computations

P = p 0.01(m) = 0.03142 m

kg/s  0.0001616)2(m/s)m1.0287(kg/
4

)m()01.0( 3
22

 pm

h = 3.657
0.01(m)

C)m/0.02922(W o- = 10.69 CW/m o2-

Substitute into (a)

C)105)((130

C)35)((130
ln

C)10.69(W/m0.03142(m)

)C7(J/kgkg/s)1008.0.0001616(
o

o

o2

o

-
-

-
-

L = 0.65 m

38

(iv) Checking.  Dimensional check

(i) 0L for mimo TT  .   Set mimo TT  in (a) gives 0L

(ii) L for .smo TT  Set smo TT  in (a) gives L = 

Quantitative checks: (i) Approximate check:

Energy added at surface  )( ms TTDLh -p

Energy gained by air = )( mimop TTcm -

(j) and (k) into (i), solve for L

)(

)(

ms

mimop

TTDh

TTcm
L

-

-


p

Energy added at the  surface = Energy gained by air (h)

(i)

(j)

(k)

39

C)70)(130(0.01)(m)(C)10.69(W/m

C)35)(C)(1057(J/kgkg/s)1008.0.0001616(
oo2

oo

--

--


π
L = 0.57 m

(ii) Value of  h is low compared with Table 1.1. Review solution. 
Deviation from Table 1.1 are expected

(5) Comments. This problem is simplified by two conditions: 
fully developed and laminar flow
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6.6 Determination of Heat Transfer Coefficient 
)( xh and Nusselt  Number DNu

Two Methods:

(2) Analytic or numerical solutions

(1) Scale analysis 0

6.5 Fig.

r

sT

sq 

mT

or

6.6.1 Scale Analysis

Fourier’s law and Newton’s law

sm

o

TT

r

xrT
k

h
-



-



),(

(6.16)

41

Scales:
r ~ t (a)

(a) and (b) into (6.16)

 

sm

t

sm

TT

TT
k

h
-

-


~

or

t

k
h


~ (6.17)

r

xrT o


 ),(

~ 
t

sm TT


- (b)

42

Nusselt number:

k

hD
NuD 

(6.17) into the above

Entrance region:  Dt  , 1DNu

t
D

D
Nu


~ (6.18)

Special case: fully developed region

)(xt ~ D

(6.18) gives
1~DNu (fully developed) (6.19)
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t in the entrance region: For all Pr

t ~ 2/12/1 --
xRePrx (4.24)

(4.24) into (6.18)

Express in terms of DRe

(d) into (c)

2/12/1~ xD RePr
x

D
Nu

(c)

D

x
Re

D

xDuxu
Re Dx 


(d)

1/21/2
1/2

~ xD RePrNu 






x

D (6.20a)

44

or

1~
2/1









x/D

PrRe

NuD
(6.20b)
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6.6.2 Basic Considerations for the Analytical 
Determination of Heat Flux, Heat Transfer 
Coefficient and Nusselt Number

(1) Fourier’s law and Newton’s law

 
r

rxT
kq o

s 


-
, (a)

Define dimensionless variables

(6.21)

si

s

TT

TT

-
-


PrRe

Dx

D

/
or

r
R , ,

u

v
v x

x
u

v
v r

r 
Du

ReD ,,
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(6.21) into (a)

 
R

TT
r

k
q is

o
s 


- )1,(0

)(
 (6.22)

Newton’s law

 
sm

s

TT

q
h

-


"
 (6.23)

Combine (6.22) and (6.23)

Rr

k

RTTr

TTk
h

mosmo

is




-



-
-


)1,(

)(

1)1,(

)(

)(
)(





 (6.24)

Dimensionless mean temperature m : 

si

sm
m TT

TT

-
-

 (6.25)
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Nusselt number:

k

rh

k

Dh
Nu o2)()(

)(
  (6.26)

(6.24) into (6.26)

R
Nu

m 
-


)1,(

)(

2
)(




 


(6.27)

Determine: ),(sq  )(h )(Nuand:

Find ),( R . Apply energy equation

(2) The Energy Equation

Assumptions

• Steady state

48

• Constant properties

• Laminar flow

• Axisymmetric

• Negligible gravity

• Negligible dissipation

• Negligible changes in kinetic and potential energy











+






















+


+




2

21

z

T

r

T
r

rr
k

z

TT

r

T
c zrp vv


r (2.24)

Replace z by x, express in dimensionless form

22

2

(

14
2

 


+

















+

  

)PrReR
R

RRR
PrRe

D
D rx vv (6.28)
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PrRePe D ,  Peclet number (2.29)

• Neglect axial conduction for:

• Third term: radial conduction

• Fourth term: axial conduction

100 DPrRePe (6.30)

Simplify (6.28)



















+

 

R
R

RRR
PrRe rD



 4

2 vv x (6.31)

(3) Mean (Bulk) Temperature mT

Need a reference local temperature. Use )(xTm

50


or

xpmp rdrTcTmc
0

2pr v (a)

where

rdrm x

ro

pr 2
0

v (b)

(b) into (a), assume constant properties





o

o

r

x

r

x

m
drr

drrT
T

0

0

v

v (6.32a)

In dimensionless form:

dRR

dRR

TT

TT

x

x

si

sm
m









-
-


v

v

1

0

1

0


 (6.32b)
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6.7 Heat Transfer Coefficient in the Fully 
Developed Temperature Region

6.7.1 Definition of Fully Developed Temperature 
Profile

Fully developed temperature:

Let 
)()(

),()(

xTxT

xrTxT

ms

s

-
-



PrRedx D05.0/  (6.33)

Definition:

For fully developed temperature
  is independent of x
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Therefore

)(r  (6.34)

From (6.34)

0



x

 (6.35)

(6.33) and (6.35):

0
)()(

),()(









-
-








xTxT

xrTxT

xx ms

s
(6.36a)

Expand and use (6.33)

0)( 



 --




-
dx

dT

dx

dT
r

x

T

dx

dT mss  (6.36b)
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6.7.2 Heat Transfer coefficient and Nusselt number  

sm

o

TT

r

xrT
k

h
-



-



),(

(6.16)

Use(6.33) to form rxrT o  /),( , substitute into (6.16)

 
dr

rod
kh o- (6.37)

Conclusion:

region developed fully the int coefficientransfer heat  The
condition boundary of regardlessconstant  is

54

Nusselt number:

Entrance region scaling result:

1~DNu (fully developed) (6.19)

dr

rd
D

h

hD
Nu o

D
)(

- (6.38)

Scaling of fully developed region:

scale for rxrT o  /),(

D

TT

r

xrT mso -



~

),(

Substitute into (6.16)

D

k
h ~ (6.39)
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(6.39) into (6.38)

1~DNu (fully developed) (6.40)

6.7.3 Fully Developed Region for Tubes at 
Uniform Surface flux

• Uniform flux

• Determine

• h

)(xTs•

Newton’s law:

r

T

sq 

u 0 D

sq 

x

 6.6 Fig.

 )()( xTxThq mss - (a)

56

)( xTs and )( xTm are unknown

sq  and h are constant

(a) gives:
  - )()( xTxT ms constant (b)

Differentiate (b)

dx

dT

dx

dT ms  (c)

(c) into (6.36b)

dx

dT

x

T s



(d)

Combine (c) and (d)

dx

dT

dx

dT

x

T ms 

 (for constant     )sq  (6.41)

57

To determine h form (6.16) :

Determine: ),,( rrT )(xTm and )( xTs

Conservation of energy for dx





 ++ dx

dx

dT
TmcTmcPdxq m

mpmps

Simplify

p

sm

mc

Pq

dx

dT 
 = constant (6.42)

(6.42) into (6.41)

=
dx

dT

dx

dT

x

T ms 



p

s

mc

Pq 
= constant (6.43)

)( xTmm

dx

dx
dx

dT
T m

m +

sq 

6.7 Fig.



4/12/2020

20

58

Integrate(6.43)

1)( Cx
mc

Pq
xT

p

s
m +


 (e)

1C = constant

Boundary condition:

mim TT )0( (f)

Conclusion: ),,( rxT )( xTm and )( xTs are linear with x

Apply (e) to (f)

miTC 1

(e) becomes

x
mc

Pq
TxT

p

s
mim


+)( (6.44)

59

Determine ),( xrT and )(xTs

Apply energy equation (2.23) in the fully developed region

Assumptions

• Negligible  axial conduction

• Negligible dissipation

0rv• Fully developed,



















r

T
r

rr

k

x

T
c xpvr (6.45)









-

2

2

12
o

x
r

r
uv (6.46)

60

However
urm o rp 2

orP p2
equation (g) becomes























-


r

T
r

rr

k

r

r

r

q

oo

s
2

2

1
4

(6.47)

Boundary conditions:

0
),0(





r

xT
(6.48a)

s
o q
r

xrT
k 


 ),( (6.48b)

Integrate (6.47)
 xf

r

T
kr

4r

r

2

r
q

r

4
2

32

o

s

o

+











- (h)
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)( xf = “constant” of integration

Boundary condition (6.48a)

0)( xf
(h) becomes









-







2

3

42

4

oo

s

r

rr

kr

q

r

T

Integrate

)(
44

4
),(

2

42

xg
r

rr

kr

q
xrT

oo

s +







-


 (6.49)

)( xg =  “constant” of integration

 Boundary condition (6.48b) is satisfied

 Use solution to )( xTm to determine )( xg

62

Substitute(6.46) and (6.49) into (6.32a)

)(
24

7
)( xg

k

qr
xT so

m +



(6.50)

Two equations for )(xTm : (6.44) and (6.50). Equating

x
mc

qP

k

qr
Txg

p

sso
mi


+


-
24

7
)( (6.51)

(6.51) into (6.49)

x
mc

qP

k

qr

r

rr

kr

q
TxrT

p

sso

oo

s
mi


+


-







-


+

24

7

164

4
),(

2

32

(6.52)

Surface temperature )( xTs : set orr  in (6.52)

63

x
mc

qP

k

qr
TxT

p

sso
mis


+


+

24

11
)( (6.53)

),,( xrT  )( xTm  and )( xTs  are determined

(6.44), (6.52) and (6.53) into (6.33)

xx
mc

qP

r

r
r

r
r

p

s

oo 11
7

11
24

4

1
11
24

1)(
2

4
2

2
+


+








-- (6.54)

Differentiate(6.54) and use (6.38)

364.4
11

48
DNu ,  laminar fully developed (6.55)
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Comments:

• Scaling result:

• (6.55) applies to:

• Laminar flow in tubes

• Fully developed velocity and temperature

• Uniform surface heat flux

• Nusselt number is independent of Reynolds and Prandtl 
numbers

1~DNu (6.40)

65

6.7.4 Fully Developed Region for Tubes at
Uniform Surface Temperature

Determine: DNu and h

Assumptions:

Energy equation (2.24):


















r

T
r

rr

k

x

T
c xpvr (6.45)

• Fully developed

sT• Uniform surface temperature

• Neglect axial conduction
• Neglect dissipation

0rv• Fully developed:

66

Boundary conditions:

0
),0(





r

xT (6.56a)

so TxrT ),( (6.56b)

Axial velocity









-

2

2

12
o

x
r

r
uv (6.46)

Eliminate xT  / in equation (6.45). Use (6.36a)

0
)()(

),()(









-
-








xTxT

xrTxT

xx ms

s
(6.36a)
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for ss TxT )( , (6.36a) gives

dx

dT

xTT

xrTT

x

T m

ms

s

)(

),(

-
-





(6.57)

(6.46) and (6.57) into (6.45)
















-
-









-

r

T
r

rr

k

dx

dT

xTT

xrTT

r

r
uc m

ms

s

o
p )(

),(
1

2

2

r (6.58)

Result: Solution to (6.58) by infinite power series:

657.3DNu (6.59)

68

• Analytical and numerical solutions

(1)Uniform surface flux

(2)Uniform  surface temperature

P

A
D f

e

4
 (6.60)

6.7.5  Nusselt Number for Laminar Fully 
Developed Velocity and Temperature
in Channels of Various Cross Sections

• Results for two classes of boundary conditions:

• Nusselt number is based on the equivalent diameter

• Results: Table 6.2

69
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1~DNu (fully developed) (6.40)

• Compare with scaling

Example 6.4:  Maximum Surface Temperature 
in an Air Duct

• 4 cm 4 cm square duct
2W/m• Uniform heat flux = 590

CoCo to 120• Heating air from 40

u = 0.32 m/s•

No entrance effects (fully developed)•

sq

miT

moT

u
L

71

Determine: Maximum surface temperature

(1) Observations

• Uniform surface flux

)(xTs• Variable Surface temperature, , maximum at outlet

• Compute the Reynolds number

• Velocity and temperature are fully developed

• The heat transfer coefficient is uniform for fully developed
flow

• Duct length is unknown

• The fluid is air

72

(2) Problem Definition

(ii) Determine surface temperature at outlet

(3) Solution Plan

(iv) Use Table 6.2 for h

(i) Find the required length

(i) Apply conservation of energy

(ii) Compute the Reynolds

(iii) Apply constant surface solution

(4) Plan Execution

(i) Assumptions

• Steady state
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• Negligible dissipation

• Constant properties

• Uniform surface flux

• Negligible changes in kinetic and potential energy

• Negligible axial conduction

(ii) Analysis

Conservation of energy

)( mimops TTcmqLP - (a)

pc = specific heat, CJ/kg o-
L = channel length, m

m = mass flow rate, kg/s

74

P = perimeter, m

sq  = surface heat flux = 590 2W/m

miT 40 Co

moT 120 Co

Solve (a) for L

qP

TTcm
L

mimop



-


)(
(b)

Find m and P

S = duct side = 0.04 m

u = mean flow velocity = 0.32 m/s

uSm 2r (c)

SP 4 (d)

75

r = density, 3kg/m

(c) and (d) into (b)

Surface temperature: Use solution (6.10)

q

TTcuS
L mimop


-


4

)(r
(e)

+ mis TxT )( 









+

)(

1

xhcm

Px
q

p
s


(f)

)( xh = local heat transfer coefficient, CW/m o2-

)(xTs = local surface temperature, Co

x = distance from inlet, m
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Maximum surface temperature at x = L

+ mis TLT )( 









+

)(

14

LhcuS

L
q

p
s r (g)

Determine h(L): Compute the Reynolds number


e

De
Du

Re 
(h)

eD = equivalent diameter, m

 = kinematic viscosity, /sm2

De = 
P

A
4 =  

S

S

4
4

2
= S (i)

77

(i) into (h)


Su

ReDe  (j)

Properties: At mT

mT = 
2

momi TT + (k)

mT = C80
2

)C)(12040( o
o


+

Properties:

pc = 1009.5 CJ/kg o-

k = 0.02991 CW/m o-

Pr = 0.706

78

 = 20.92 610- m2/s

r = 0.9996 kg/m3

(j) gives

9.611
/s)(m1020.92

.04(m)0.32(m/s)0
26




 -DeRe , laminar flow

(6.55) and Table 6.2

k

Dh
Nu e

De  =  3.608 (l)

hh 

eD

k
h 608.3 (m)



4/12/2020

27

79

(iii) Computations. Use (e)

4378.0
)

2
590(W/m(4)

C)
o

40)(C)(120
o

(J/kg-1009.5 0.32(m/s)0.04(m))
3

m0.9996(kg/


-
L m

Use (m)

h(L) =h =
0.04(m)

C)m0.02991(W/
608.3

o-
= 2.7 CW/m o2-

Substitute into (g)












-
+

-

+

C)o22.7(W/m

1

C)og1009.5(J/k(m/s)20.04(m)0.3)3m0.9996(kg/

)(0.4378)(m4
W/m(590

)C(40

2

o)(

)

LTs

80

)(LTs = 338.5 Co

(iv) Checking. Dimensional check:

Quantitative checks: (1) Alternate approach to determining : 

Newton’s law at outlet

])([ moss TLThq - (n)

Solve for)(LTs

C338.5
C)2.7(W/m

)590(W/m
C)(120 o

o2

2
o 

-
+)(LTs = moT

h

qs =

(2) Compare h with Table 1.1

Limiting check: L =0 for mimo TT  . Set mimo TT 
into (e) gives L = 0 

81

(5) Comments

(i) Maximum surface temperature is determined by the 
heat transfer   coefficient at outlet

(ii) Compute the Reynolds number to establish if the flow
is laminar or turbulent and if it is developing or fully 
developed
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6.8 Thermal Entrance Region: Laminar Flow
Through Tubes

6.8.1 Uniform Surface Temperature: 
Graetz Solution

• Laminar flow through tube

• Velocity is fully developed

• Temperature is developing

• No axial conduction (Pe > 100)

sT• Uniform surface temperature

Velocity:

6.8 Fig.

r

T

x
t

sT

u
iT
0

0rv (3.1)

83

)(
4

1 22
oz rr

zd

pd
-


v (3.12)

Rewrite (3.1)

(3.1) and (6.61) into (6.31)

  

















-
R

R
RR

R



 1

1
2

1 2 (6.62)

Boundary conditions:

0
)0,(





R



0)1,( 

1),0( R

(6.61) 212 R
u

v
v* - z

z

84

Solution summary: Assume a product solutions

)(RR)(),(  XR (a)

(a) into (6.62), separating variables

02 2 + nn
n

d

d
X

X 


(b)

0)1(
1 222

22

2

-++ nn
nn R

dR

d

RdR

d
R

RR  (c)

Solution )(RnR to (c) is not available in terms of
simple tabulated functions

•

Solution )(nX to (b) is exponential•

n = eigenvalues obtained from the boundary conditions•
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Solutions to (b) and (c) into (a)

)2exp()(),(
0

2 




-
n

nnn RCR R (6.64)

nC = constant

Surface flux:

 
R

TT
r

k
q is

o
s 


- )1,(

)(



0

(6.22)

(6.64) gives

)2exp(
)1(),(

0

2 




-




n
n

n

n
n d

d
C

R R

R1
(d)

Define

dR

dC
G nn

n
)1(

2

R
- (e) 
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(e) into (6.22) 

  )2exp(
2

)( 2

0

 n
n

nis
o

s GTT
r

k
q --- 





(6.65) 

Local Nusselt number: is given by

R
Nu

m 
-


)1,(

)(

2
)(




 


(6.27) 

(d) gives R /)1,(

Mean temperature )(m : (6.61) and (6.64) into (6.32b), 
integrate by parts and use(e) 

  )2exp(8 2

0
2




 n
n n

n
m

G
- 




(6.66) 
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(d), (e) and (6.66) into (6.27)

 











-

-


0

2
2

0

)2exp(2

)2exp(

n
n

n

n

n
nn

G

G

Nu







2

(6.87) 

Average Nusselt number:  For length x

k

Dh
Nu

)(
)(


  (f) 

Two methods for determining )(h :

(1) Integrate local )(h to obtain )(h

(2) Use (6.13) 
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][)()( exp x
cm
hP

TTTxT
p

sism --+ (6.13)

Solve forh

si

smp

TT

TxT

xP

cm
h

-
-

-
)(

ln (g)

(g) into (f), use 4/2Dum pr DP p and definitions of 

, DRe and m in (6.21) and (6.25)

)(ln
4

1
)( 


 mNu - (6.68) 

Need n and nG to compute ),(sq  ),(m )(Nu and )(Nu•

Table 6.3 gives n and nG•

• (6.67) and (6.68) are plotted in Fig. 6.9 as )(Nu and )(Nu

89

90

fornumber Nusselt  average and Local
 re temepratusurface uniformat  tube ]4[

PreR

Dx

D

/


N
us

s e
lt 

n u
m

be
r

Nu  Average
Nu  Local

6.9 Fig.
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Comments

DNu and DNu decrease with distance from entrance(1) 

(2) At any location  DD NuNu 

(3) Asymptotic value (at 05.0 ) for DNu and DNu
is 3.657. Same result of fully develop analysis

657.3)( Nu (6.69) 

(4) Properties at

(5) Solution by trial and error if moT is to be determined

2
momi

m
TT

T
+

 (6.70) 

92

Example 6.5: Hot Water Heater

• Developing temperature

Fully developed velocity in tube •

Diameter = 1.5 cm•

C25oiTUniform inlet temperature•

Length =  80 cm•

Flow rate =  0.002 kg/s•

C75oHeat water to •

Determine: Surface temperature

x0

r

t

sT

u
iT

• Uniform surface temperature
(1) Observations

• Compute Reynolds number: Laminar or turbulent flow?    

93

hL and tL : Can they be neglected?• Compute

(2) Problem Definition 

(i) Determine sT

(ii) Determine h

(3) Solution Plan

(iii) Use appropriate results for Nusselt number

(i) Apply uniform surface temperature results

(ii) Compute the Reynolds number: Establish if problem is 
entrance or fully developed

(4) Plan Execution 

(i) Assumptions 

• Steady state
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• Uniform surface temperature 

• Negligible changes in kinetic and                         
potential energy

• Negligible axial conduction

• Negligible dissipation

• Constant properties

(ii) Analysis

Uniform surface temperature

][)()( exp x
cm

hP
TTTxT

p
smism --+ (6.13) 

h = average heat transfer coefficient, CW/m o2-
m = flow rate kg/s002.0

95

miT mean inlet temperature C25o

moT mean outlet temperature C75o

Apply (6.13) at outlet (x = L) and solve for sT

 )/exp()(
)/exp(1

1
pmmi

p
s mcLhPLTT

mcLhP
T -

-
 (a) 

Properties: at mT

mT = 
2

momi TT +

Perimeter P
P = p D

D = diameter = 1.5 cm = 0.015 m 

96

Determineh : Compute the Reynolds

Properties: at mT

mT = C50
2

)C)(8020( o
o


+

pc = 4182 J/kg-oC

k = 0.6405 W/m-oC

Pr = 3.57

 = 0.553710-6 m2/s


Du

ReD 

2

4

D

m
u

pr
 (e)  
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r = 988 kg/m3

Use (e)

m/s0.01146
)(m(0.015))988(kg/m

g/s)4(0.002)(k
223


p
u

Use (d) gives

DRe 5.310
/s)(m100.5537

s)0.015(m)0.01146(m/
26





- , laminar flow

Determine hL and tL

Dh
h ReC

D

L  (6.5)

Dt
t PrReC

D

L
 (6.6)

98

hC = 0.056 (Table 6.1)

tC = 0.033 (Table 6.1)

(6.5) and (6.6)

hL = 0.056  0.015 (m)  310.5 = 0.26 m

tL = 0.033  0.015 (m)  310.5  3.57 = 0.55 m

• Use Graetz solution Fig. 6.9 or Table 6.4

Compute 

PrRe

Dx

D

/
 (f) 

hL and tL are not negligible, tube length L = 0.8 m•

99

Nusselt number Nu gives h

Nu
D

k
h  (g)

(iii) Computation. Evaluating  at x = L

0481.0
57.35.310

)m)/).015(m(8.0 




At 481.0 Fig. 6.9 gives

6.4Nu

Substitute into (g) 

C196.4W/m4.6
0.015(m)

C)0.6405(W/m o2
o

--h
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Equation (a) gives sT

Compute the exponent of the exponential in (a)

40.8852
C))4182(J/kg0.002(kg/s

C)0.8(m)196.4(W/m((0.015)(m)
o

o2


-
-


p

pmc

LhP

Substitute into (a)

  C110.1524)C)exp(0.8875(C)25(
)88524.0exp(1

1 ooo -
-

sT

(iv) Checking. Dimensional check: 

Limiting checks:

(i)  For )(LTTmi  (no heating) sT should be equal to miT .

Set )(LTTmi  in (a) gives mis TT 

101

(ii) If L = 0, sT should be infinite. Set in L = 0 (a) gives sT

Quantitative checks:

(i) Approximate check:

Energy added at the  surface = Energy gained by water (h) 

Let 

mT = average water temperature in tube

Energy added at surface = )( ms TTDLh -p

(j) and (k) into (i), solve for sT

(i) 

Energy gained by water = )( mimop TTcm - (j) 

102

DLh

TTcm
TT mimop

ms p
)( -

+ (k) 

(k) gives

C106.5
(0.8)(m)(0.0155(m)C)196.4(W/m

C)25)(C)(75)4182(J/kg0.002(kg/s
C)50( o

o2

oo
o 

-
--

+
psT

h(ii) Compare computed with Table 1.1

(5) Comments

• Small error is due to reading Fig. 6.9 

• Fully developed temperature model:

DNu = 3.657, gives CW/m3.156 o2-h
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6.8.2 Uniform Surface Heat Flux 

• Fully developed inlet velocity 

• Laminar flow through tube 

• Temperature is developing 

• No axial conduction (Pe > 100) 

• Repeat Graetz entrance  problem with uniform
surface heat

t

6.10 Fig.

r
T

u 0 D

sq 

x

sq 

iT

Energy equation: Same as
for Graetz  problem 

104

  

















-
R

R
RR

R



 1

1
2

1 2 (6.62)

Boundary conditions:

0)
)0,(





R


(6.71a) 

)(

)1,(

si

os

TTk

rq

R -





 
(6.71b)

1),0( R (6.71c) 

Analytic solutions: Based on separation of variables

(1) Local Nusselt number

105

1

1

)2exp(
2

1

48

11
)( 2

-










-- 

n
nnA

k

hx
Nu  (6.72)

Table 6.6 lists eigenvalues 2
n and constant nA

(2) Average Nusselt number
1

1
2

2

2

)2exp(1

2

1

48

11
)(

-









 --
- 

n n

n
nA

k

hx
Nu


 (6.73) 

Limiting case:

Fully developed: Set  (6.72) or (6.73)

364.4
48

11
)(

1









-

Nu (6.74) 

Same as  fully developed result (6.55). 
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Graphical results: Fig. 6.11

107

PreR

Dx

D

/


N
us

s e
lt 

 n
um

be
r

Nu  Average

Nu  Local

[4]flux heat  surface uniformat  e       tub          

for number Nusselt  average and Local  6.11 Fig.


