CHAPTER 1 BASIC CONCEPTS

1.1 Convection Heat Transfer

- Examine thermal interaction between a surface and an adjacent moving fluid
1.2 Important Factors in Convection $\underset{T}{\text { Heat }} q_{s}^{\prime \prime}$ Transfer
- Surface temperature is too high. How to reduce it?
(1) Use a fan
(2) Change the fluid
(3) Increase surface area

- Conclusion: Three important factors in convection (1) fluid motion
(2) fluid nature
(3) surface
- Exappletrof the role of fluid motion in convection: - Fanning to feel cool
- Stirring a mixture of ice and wate
- Blowing on the surface of coffee in a cup
- Orienting a car radiator to face air flow
1.3 Focal Point in Convection Heat Transfer Determination of temperature distribution in a moving fluid

$$
T=T(x, y, z, t)
$$

1.3 Fourier's Law of Conduction

$$
\begin{aligned}
& q_{x} \propto \frac{A\left(T_{s i}-T_{s o}\right)}{L} \\
& q_{x}=k \frac{A\left(T_{s i}-T_{s o}\right)}{L}
\end{aligned}
$$

$k=$ thermal conductivity

- Valid for:
(1) steady state
(2) constant k
(3) one-dimensional conduction
\qquad

```
- Reformulate to relax restrictions. Consider element \(d x\)
\(q_{x}=k A \frac{T(x)-T(x+d x)}{d x}=-k A \frac{T(x+d x)-T(x)}{d x}\)
    \(q_{x}=-k A \frac{d T}{d x} \quad d x\)
    \(q_{x}^{\prime \prime}=\) Heat flux
            \(q_{x}^{\prime \prime}=\frac{q_{x}}{A}\)
            \(q_{x}^{\prime \prime}=-k \frac{d T}{d x}\)
                            
                            (1.5)
Generalize (1.5):
    \(q_{x}^{\prime \prime}=-k \frac{\partial T}{\partial x}, \quad q_{y}^{\prime \prime}=-k \frac{\partial T}{\partial y}, \quad q_{z}^{\prime \prime}=-k \frac{\partial T}{\partial z}\)
(1.6)
```

- Apply Newton's law to the bulb:

$$
T_{s}=T_{\infty}+\frac{q_{s}^{\prime \prime}}{h}
$$

- Increase V_{∞} to increase h and lower T_{s}

Process
Free convectio
Gases
Gases
Liquids
Forced convection Gases
Liquids
Liquids
Liquid metals ase change
Boiling Boiling
Condensation

1.7 Differential Formulation of Basic Laws

- Three basic laws: conservation of mass, momentum, and energy
- Formulation
- Differentia
- Integral
- Finite difference
- Key assumption: continuum
1.8 Mathematical Background

Fig. 1.4 (a) Velocity Vector \vec{V}

$$
\vec{V}=u i+v j+w k
$$

(1.12)

(b) Velocity Derivative	
	$\frac{\partial \vec{V}}{\partial x}=\frac{\partial u}{\partial x} i+\frac{\partial v}{\partial x} j+\frac{\partial w}{\partial x} k$
(c) The Operator ∇	
Cartesian: $\quad \nabla \equiv \frac{\partial}{\partial x} i+\frac{\partial}{\partial x} j+\frac{\partial}{\partial x} k$	
Cylindrical: $\quad \nabla \equiv \frac{\partial}{\partial r} i_{r}+\frac{1}{r} \frac{\partial}{\partial \theta} i_{\theta}+\frac{\partial}{\partial z} i_{z}$	
Spherical: $\nabla \equiv \frac{\partial}{\partial r} i_{r}+\frac{1}{r} \frac{\partial}{\partial \theta} i_{\theta}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} i_{\phi}$	

\qquad
(d) Divergence of a Vector
div. $\vec{V} \equiv \nabla \cdot \vec{V}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}$
(e) Derivative of the Divergence
or $\quad \frac{\partial}{\partial x}(\nabla \cdot \vec{V})=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)$
or (1.17)
$\frac{\partial}{\partial x}(\nabla \cdot \vec{V})=\nabla \cdot \frac{\partial}{\partial x}(u i+v j+w k)$
$\frac{\partial}{\partial x}(\nabla \cdot \vec{V})=\nabla \cdot \frac{\partial \vec{V}}{\partial x}$
Grad $T=\nabla T=\frac{\partial T}{\partial x} i+\frac{\partial T}{\partial y} j+\frac{\partial T}{\partial z} k$ (g) Total Differential and Total Derivative
$f=$ flow field dependent variable such as u, v, p, etc. Cartesian Coordinates:

$$
f=f(x, y, z, t)
$$

Total differential of f
$d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z+\frac{\partial f}{\partial t} d t$
$\frac{d f}{d t} \equiv \frac{D f}{D t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}+\frac{\partial f}{\partial t}$

But $\frac{d x}{d t}=u, \frac{d y}{d t}=v, \frac{d z}{d t}=w$	(c)
Substitute (c) into (b)	
$\frac{d f}{d t}=\frac{D f}{D t}=u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+w \frac{\partial f}{\partial z}+\frac{\partial f}{\partial t}$	(1.21)
Total derivative: $\quad \frac{d f}{d t}=\frac{D f}{D t}$	
Convective derivative: $u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+w \frac{\partial f}{\partial z}$	(d)
Local derivative: $\quad \frac{\partial f}{\partial t}$	(e)

\qquad

$$
\begin{aligned}
& \text { Apply to velocity component } u \text {. Set } f=u \\
& \qquad \frac{d u}{d t}=\frac{D u}{D t}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\frac{\partial u}{\partial t} \\
& \text { (1.22) represents } \\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\text { convective acceleration in the } x \text {-direction } \\
& \frac{\partial u}{\partial t}=\text { local acceleration } \\
& \text { Cylindrical coordinates : } r, \theta, z \\
& \frac{d v_{r}}{d t}=\frac{D v_{r}}{D t}=v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v_{r}}{\partial z}+\frac{\partial v_{r}}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v_{\theta}}{d t} & =\frac{D v_{\theta}}{D t} \\
& =v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r} v_{\theta}}{r}+v_{z} \frac{\partial v_{\theta}}{\partial z}+\frac{\partial v_{\theta}}{\partial t} \\
\frac{d(1.23 \mathrm{~b})}{d t} & =\frac{D v_{z}}{D t}=v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}+\frac{\partial v_{z}}{\partial t}
\end{aligned}
$$

- Total derivative of temperature:
set $f=T$ in (1.21)

$$
\frac{d T}{d t}=\frac{D T}{D t}=u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}+\frac{\partial T}{\partial t}
$$

| 1.9 Problem Solving Format |
| :--- | :--- |
| Solve problems in stages: |
| (1) Observations |
| (2) Problem Definition |
| (3) Solution Plan |
| (4) Plan Execution |
| (i) Assumptions |
| (ii) Analysis |
| (iii) Computations |
| (iv) Checking |
| (5) Comments |

\qquad

1.10 Units
 SI units
 Length (L): meter (m)
 Time (t) : second (s)
 Mass (m): kilogram (kg)
 Temperature (7): kelvin (K)
 - Celsius and kelvin scales
 $\left.\boldsymbol{T}^{\circ}{ }^{\circ} \mathrm{C}\right)=\boldsymbol{T}(\mathrm{K})-$
 Derived units: $\mathbf{2 7 3 . 1 5}$
 - Force: newton (N)
 One newton = force to accelerate one kilogram one meter per sec per sec
 Force $=$ mass \times acceleration
 $\mathrm{N}=\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}$

- Energy: joules (J)

One joule = energy due to a force of one newton moving a distance of one mete
$\mathrm{J}=\mathrm{N} . \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{\mathbf{2}} / \mathrm{s}^{\mathbf{2}}$

- Power: watts(W)

One watt = one joule per second $\mathrm{W}=\mathrm{J} / \mathrm{s}=\mathrm{N} . \mathrm{m} / \mathrm{s}=\mathrm{kg} . \mathrm{m} 2 / \mathrm{s} 3$


```
3) Solution Plan.
Apply Newton's law to element and integrate
4) Plan Execution
    (i) Assumptions
        - steady stat
        one-
        - dimeffsionat
        - uniform T}\mp@subsup{T}{s}{\infty
    - negligible radiation
    (ii) Analysis
Apply Newton's law
dq=h(x)(T
    h= C
\begin{tabular}{lr} 
Triangle 1: & \(d A_{1}=y_{1}(x) d x\) \\
Triangle 2: & \(d A_{2}=y_{2}(x) d x\) \\
Geometry: & \(y_{1}(x)=\frac{H}{L}(L-x)\) \\
& \(y_{2}(x)=\frac{H}{L} x\) \\
(e) into (c), (f) into (d): & \(d A_{1}=\frac{H}{L}(L-x) d x\) \\
& \(d A_{2}=\frac{H}{L} x d x\)
\end{tabular}
(b) and (g) into (a), integrate

\[
\begin{gathered}
q_{1}=\int d q_{1}=\int_{0}^{L} C\left(T_{s}-T_{\infty}\right) \frac{H}{L} \frac{L-x}{x^{1 / 2}} d x \\
\\
q_{1}=(4 / 3) C\left(T_{s}-T_{\infty}\right) H L^{1 / 2} \\
q_{2}=\int d q_{2}=\int_{0}^{L} C\left(T_{s}-T_{\infty}\right) \frac{H}{L} \frac{x}{x^{1 / 2}} d x \\
\quad q_{2}=(2 / 3) C\left(T_{s}-T_{\infty}\right) H L^{1 / 2}
\end{gathered}
\]

Ratio of (i) and (j)
\(\frac{q_{1}}{q_{2}}=2\)
(k)

Dimensional check
(b) gives units of \(C: \quad C=W / m^{3 / 2}-{ }^{0} \mathrm{C}\)


\section*{(i) gives units of \(q_{1}\)}
\(q_{1}=C\left(W / m^{3 / 2}{ }^{\circ} \mathrm{C}\right)\left(T_{s}-T_{\infty}\right)\left({ }^{\circ} \mathrm{C}\right)_{H(m) L}{ }^{1 / 2}\left(\mathrm{~m}^{1 / 2}\right)=\mathrm{W}\) Qualitative
\({ }^{\text {check: }} \dot{q}_{1}>q_{2}\) because base of 1 is at \(\mathrm{x}=0\) where \(h=\infty\). (5) Comments
- Orientation is important.

Same area triangles but different \(q\)
- Use same approach for other geometries

\(\qquad\)
\(\qquad\)
\(\longrightarrow\) _```

