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CHAPTER 2

DIFFERENTIAL FORMULATION 

OF THE BASIC LAWS

2.1 Introduction

 Solutions must satisfy 3 fundamental laws:

conservation of mass

conservation of momentum

conservation of energy

 Differential formulation: application of basic laws
to differential element
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2.2 Flow Generation
(i)  Forced convection: by mechanical means(fan,  blower, 

nozzle, jet, etc.) 

(ii) Free (natural) convection: due to gravity and density 
change

2.3  Laminar vs. Turbulent Flow

Laminar: No random fluctuations
Turbulent: Random fluctuations

t

u laminarturbulent

(b)(a)

u

t

Fig. 2.1
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Transition from laminar to turbulent: 

Transition Reynolds number,  depends on

 flow geometry

 surface roughness

 pressure gradient

 etc.

Flow over flat plate:  500,000

Flow through tubes:  2300

2.4 Conservation of Mass: 

The Continuity Equation 

3
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2.4.1 Cartesian Coordinates

(b)(a)
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Fig. 2.2

-element  to added mass of Rate
element  from remove mass of Rate

element within change mass of Rate

(2.1)
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Assume continuum, use  Fig. 2.2b, and (2.1)
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(a)

Express (a) in terms of density and velocity
(b)VAm 

Apply (b) to element
udydzmx  (c)

dxdzm y v (d)

dxdywmz  (e)
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Mass m of element 

dxdydzm  (f)

(c)–(f) into (a) 

      0
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 (2.2a) is the continuity equation

Alternate forms: 
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2.4.2 Cylindrical Coordinates

or
0




V
t




(2.2d)

Special case: constant density (incompressible fluid)

0
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(2.2c) becomes

0 V


(2.3)
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Fig. 2.3
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2.4.3 Spherical Coordinates
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(2.4)
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Fig. 2.4 
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Example 2.1:  Fluid in Angular Motion




r

shaft

 Shaft rotates inside tube
 Incompressible fluid 
 No axial motion
 Give the continuity equation

Solution

(1) Observations 

 Cylindrical coordinates
 No variation in axial and angular
directions
 Incompressible fluid(2) Problem Definition. Simplify the 3-D continuity 

(3) Solution Plan.

Apply the continuity equation in cylindrical coordinates

9
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(4) Plan Execution

(i) Assumptions

 Incompressible
 No axial motion
 Shaft and tube are concentric (axisymmetric, no 

angular variation)

(ii) Analysis.  Start with (2.4):

      0
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(2.4)

Simplify
 0




t


Incompressible fluid:     is constant, 

0zvNo axial velocity: 

0




Axisymmetric:
10

(2.4), gives   0



rr
r

v (a)

Integrate

C = constant of 
integration

Boundary condition: 0),( or rv

Use (b)

Cr r v (b)

0C (c)

(b) gives 0rv (d)

(iii) Checking

Dimensional check: Each term in (2.4) has units of
density per unit time.

(5) Comments 
11

2.5 Conservation of Momentum: 
The Navier-Stokes Equation of Motion

2.5.1 Cartesian Coordinates

  amF


)( (a)

dy

x

y

z

dz

2.5 Fig.

dx

 Momentum is a vector 
quantity 

 Newton’s law of motion:  
3 components

 Apply Newton’s law to 
element, Fig. 2.5

12
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a


= acceleration of the element

F


 = external force on element

m = mass of the element

x-direction:   xx amF )( (b)

mMass dzdydxm   (c)

xaTotal acceleration

t
u

z
u

w
y
u

x
u

u
Dt
Du

dt
du

ax 














 v (d)

(c) and (d) into (b)

dxdydz
Dt

Du
Fx   (e)
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External x-forces:

(i)  Body force (gravity)

(ii) Surface force

Total forces

 surfacexbodyxx FFF    δδδ (f)

Gravity force:

Surface forces:

 dxdydzgF xbodyx   (g)

xx normal stress on surface dydz
14

yx = shearing (tangential) stress on surface dxdz

zx = shearing (tangential) stress on surface dxdy

Summing up x-forces, Fig. 2.6

 dxdydz
zyx

F zxyxxx
x 





















 surface (h)

Substituting (f), (g) and (h) into (e)

x-direction:

zyx
g

Dt
Du zxyxxx

x 












 (2.6a)

Similarly, for y and z-directions

y-direction:

zyx
gρ

Dt
D zyyyxy

y 















 v

(2.6b)

15



11/4/2020

6

z-direction:

zyx
g

Dt

Dw zzyzxz
z 















 (2.6c)

Unknowns in (2.6), 13:
,,,,,, yxxyzzyyxx  ,xz yzzx  ,zyu, v, w,  ,

However

yxxy   zxxz   zyyz  , , (i)

Reduce number of unknowns:
Use empirical relations called the constitutive equations
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 Fluids obeying (2.7) are Newtonian fluids

Substitute (2.7) into (2.6 )
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(2.8y)

NOTE:

 Eqs. (2.8) are the Navier-Stokes equations of motion
,  Unknowns are 6: u, v, w, p, 

 Restrictions: continuum and Newtonian fluid 
18
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Vector form of  (2.8x), (2.8y) and (2.8z)

   
     VVV

VVVpg
Dt
VD












 2

3

4

(2.8)

Simplified cases:

(i) Constant viscosity 

and
0 (j)

      VVVVV
 2  (k)

(j) and (k) into (2.8)

  VVpg
Dt

VD 


2

3

1
  (2.9)
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Eq. (2.9) is valid for: (1) continuum, (2) Newtonian (3) 
constant viscosity.

(ii) Constant viscosity and density  

Continuity equation (2.3)

0 V


(2.3)
(2.3) into (2.9) 

Vpg
Dt
VD 


2  (2.10)

Eq. (2.10) is valid for: (1) continuum, (2) Newtonian (3) 
constant viscosity (4) constant density

The 3-components of (2.10):

20

x-direction:  

z-direction:

y-direction:     
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2.5.2 Cylindrical Coordinates 
Assumptions: Continuum, (2) Newtonian fluid, (3) constant 

viscosity and (4) constant density.
r-direction:
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2.5.3 Spherical Coordinates

z-direction:
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Assumptions: Continuum, (2) Newtonian fluid, (3) constant 
viscosity and (4) constant density.

r-direction:




































































vvv
vv

vvvvvvvv
v

sin

2cot222

sin

2222
2

22

rrrrr

p
g

trrr

rrr

rrrr
r r

(2.12r)
23

 -direction:







































































vvv
v

vvvvvvvv
v

22222
2

2

sin

cos2

sin

21

cot

sin

rrr

p
r

g

trrrrr
r

r

r
v

(2.11   )

 -direction: 





































































vvv
v

vvvvvvvvv
v

222222
2

sin

cos2

sin

2

sin

sin
1

cot
sin

rrr

p
r

g

trrrrr

r

r
r

v

(2.11   )

24



11/4/2020

9

Example 2.2: Thin Liquid Film Flow Over an 
Inclined Surface 

2Where       is 

2

2
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2
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sin

1
sin

sin
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u
0

 Incompressible

 Parallel streamlines. 

 Write the Navier-Stokes    
equations 

(1) Observations 
 Flow is due to gravity
 Parallel streamlines: v = 0 
 Surface pressure is uniform (atmospheric)
 Cartesian geometry

25

(2) Problem Definition.
Simplify the x and y components of the Navier-Stokes 
equations 

(3) Solution Plan.

Start with the Navier-Stokes equations in Cartesian 
coordinates and simplify for this case

(4) Plan Execution
(i) Assumptions

 Newtonian
 steady state
 flow is in the x-direction only
 constant properties
 uniform ambient pressure
 parallel streamlines

26

(ii) Analysis

Start with  (2.10x ) and (2.10y)
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Gravitational acceleration:

singgx  cosgg y , (a)
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(2.10y)
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Simplifications:

Steady state: 0






tt
u v

(b)

Axial flow (x-direction only):

Parallel streamlines:

(a)-(d) into (2.10x) and (2.10y)

and

0v (d)
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0
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(f) is thy y-momentum equation 
28

Simplify (e) using continuity (2.3)

(c) and (d) into (g)

(h) into (e)

Integrate (f)

f(x) = “constant” of integration

)()cos( xfygp   (j)

0sin 2

2
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p
g  (i)

0



x
u

(h)

0












zyx

u
V

wv
(g)

p,Hy 
Hy 

At free surface,             pressure is uniform equal to        .  
Set              in (j)     

 cos)( gHpxf   (k)

29

(k) into (j) 

Different (k)

(m) into (i)

This is the x-component 

(iii) Checking

Dimensional  check: Each term in (f) and (n) must have 
same units: 

 g cos  = (kg/m3)(m/s2) = kg/m2-s2

22
3

2

3

2

s-kg/m
m

m/skg

m

N
m

N/m
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0sin
2
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g

2

 (n)

30
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g sin  = kg/m2-s2

2yd

ud 2


2m

m/s
= (kg/m-s)          = kg/m2-s2

Limiting check: For  zero gravity fluid remains stationary.  
Set g = 0 in (n) gives

,0u Solution to  (o):                fluid is stationary 

0
2


yd

ud 2
(o)

(5) Comments 

 Significant simplifications for: For 2-D incompressible, 
parallel flow 

 The flow is 1-D since u depends on y only
31

2.6 Conservation of Energy: The Energy  Equation

2.6.1 Cartesian Coordinates 

dy

x

y

z

dz

2.5 Fig.

dx

destroyedor  created benot  can Energy

Apply to element dxdydz

32

convection bytransport  energy

gssurroundin onelement 
by done work of rateNet 

conduction by addition
heat  of rateNet _

 kinetic  and  internal  of  rateNet  of change of Rate
kinetic  and  internal

element of energy

DC

BA

(2.14)

 Express each term in (2.14) in terms of temperature 
(Appendix A)

 Explain physical  significance of each term 

 Result is called the energy equation 

 Assumptions 

33
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 Continuum

 Newtonian 

 Negligible nuclear, electromagnetic and radiation energy 

(1) A  = Rate of change of internal and kinetic energy of 
element

 Internal energy of element depends on temperature 
(thermodynamic) 

 Kinetic energy of element depends on velocity (flow 
field) 

 dxdydzVu
t

)2/ˆ(A 2



  (A-1)

34

(2) B = Net rate of internal and kinetic energy by convection

 Internal energy convected through sides with mass flow. 
Depends on temperature

 Kinetic energy convected through sides of element with 
mass flow. Depends on velocity 

  dxdydzVVu )2/ˆ(B 2  (A-2)

(3) C = Net rate of heat addition by conduction

 Conduction at each surface depends on  temperature 
gradient

 Apply Fourier’s law (1.6)

dxdydzq )(C   (A-3)

35

(4)  D = Net rate of work done by the element on the 
surroundings

velocity  force  work of Rate 

36
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 18 surface forces (Fig. 2.6)
 3 body forces (gravity)
 Total 21 forces at 21 velocities
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Substitute (A-1), (A-2), (A-3) and (A-7) into (2.14)
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(A-8)
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Simplify using:
 Fourier’s law (1.6)
 Continuity equation (2.2)
 Momentum equations (2.6)
 Constitutive equations (2.7)

û ĥ Thermodynamic relations for    and 

 
Dt
Dp

TTk
Dt
DT

c p (2.15)

where

 coefficient of thermal expansion (compressibility)

 is a property 

pT 











 1

(2.16)

 = dissipation function (energy due to friction)
38

2.6.2 Simplified Form of the Energy Equation 
(a) Cartesian Coordinates

 Use (2.15)

 Assumptions leading to (2.15): 

 is Important in high speed flow and for very viscous 
fluids

2

3
2

222

222
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(2.17)
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 Continuum

 Newtonian 

 Negligible nuclear, electromagnetic and radiation 
energy transfer

 Special cases 

(i) Incompressible fluid

0

ccc p  v

and

  Tk
Dt
DT

c p
(2.18)

(ii) Incompressible constant conductivity fluid

(2.18) is simplified further constant k: 
40

or

(iii) Ideal gas

(2.20) into (2.16)

(2.21) into (2.15)

Using continuity (2.2c) and (2.20)

  Tk
Dt
DT

c p
2

(2.19a)
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(2.19b)

RT
p

 (2.20)

TRT

p
T p

111
2

















 (2.21)

 
Dt
Dp

Tk
Dt
DT

c p
(2.22)

  VpTk
Dt
DT

c


v
(2.23)
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(b) Cylindrical Coordinates 

Assume: 

 Continuum
 Newtonian fluid
 Negligible nuclear, electromagnetic and radiation energy 

transfer
 Incompressible fluid 
 Constant conductivity

where
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(2.24)
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(c) Spherical Coordinates 

Assume: 
 Continuum
 Newtonian fluid
 Negligible nuclear, electromagnetic and radiation energy 

transfer
 Incompressible fluid 
 Constant conductivity

22
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(2.25)
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where
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Example 2.3: Flow Between Parallel Plates  
 Axial flow with dissipation

 Assume: 

 Newtonian 
 Steady state
 Constant density 
 Constant conductivity
 Parallel streamlines 

 Write the energy equation 

(1) Observations
 Parallel streamlines: v = 0 

 Incompressible, constant k
 Include dissipation 

 Cartesian geometry 
45
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(2) Problem Definition
Determine the energy equation for parallel flow 

(3) Solution Plan
Start with the energy equation for constant     and    in 
Cartesian coordinates and simplify 

 k

(4) Plan Execution

(i) Assumptions 
 Newtonian 

 Steady state

 Axial flow 
 k Constant     and 

 Negligible nuclear, electromagnetic and radiation 
energy transfer  

 Parallel streamlines.
46

(ii) Analysis. Start with energy equation (2.19b)
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where
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However

Steady state: 0



t
T

(a)

47

Axial flow:

Parallel flow:

(a)-(c) into (2.19b) and (2.17)

Further simplification: use continuity (2.3) 

(b) and (c) into (f) gives

0




z

w (b)

0v (c)
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(g) into (e)

(h) into (d) gives the energy equation

(iii) Checking
Dimensional check: Each term in (i) has  the same 

3W/munits of

Limiting check: For no fluid motion, energy equation 
reduces to pure conduction. Set            in (i) 0u

2
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2.7 Solutions to the Temperature Distribution 

(5) Comments
,,kc p  In energy equation (i), properties                and 

represent fluid nature

 Velocity u represents fluid motion 

 Last term in (i) represents dissipation, making (i) non-
linear 

Governing equations: continuity (2.2), momentum (2.8) 
and energy (2.15) 

50

Basic law
No. of 

Equations Unknowns

Viscosity relation

Conductivity relation
)( Tpkk , 

)( Tp, 

1

1

T u v w p  k





T k

TABLE  2.1

p






v1

3

1

1

T

T

p

p

p

w

wv

u

u

T1 v wu

 Continuity

 Momentum

Energy

State of Equation

pc vc 
 Solution consideration: Table 2.1 Equation of state 

gives      and     and  

51
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(1) General case: variable properties

 8 eqs. solved simultaneously for 8 unknowns

 Velocity and temperature fields are coupled.

k (2) Special case 1: constant     and  

 6 eqs. solved simultaneously for 6 unknowns 

k  (3) Special case 2: constant     ,     and  

 5 unknowns: T, u, v, w, p, 5 eqs., see red box 

 However, 4 unknowns: u, v, w, p, 4 eqs., give flow field, 
see white box 

 Velocity and temperature fields are uncoupled

, , 8 unknowns: T, u, v, w, p, k , 8 eqs. (yellow box)

 6 Unknowns: T, u, v, w, p,    , 6 eqs., see blue box 

52

2.8 The Boussinesq Approximation 

 Can’t assume     = constant

 Alternate approach: the Boussinesq approximation

 Start with N-S equations for variable  

 Free convection is driven by density change

 Assume:

   0. V


(2) in continuity,

 (1) in inertia term

(2.9) becomes

  VVpgp
Dt
VD 


2

3
1   (2.9)

Vpg
Dt
VD 


2  (a)

53

)( Reference state (far away from object) where

V


02  
 V

Dt
VD 


uniform, (b)

Apply(a) at infinity , use (b)

Subtract (c) from (a)

 (3) Express (             ) in term of temperature difference. 
Introduce 

Assume, for free convection  )(),( TpT  

0  pg
 (c)

    Vppg
Dt
VD 


2   (d)

pT 











 1

(2.16)

dT
d







1
(e)

54
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,T )(TFor small         is linear



Substitute (2.28) into (d)

 Simplification leading to (2.29) is called the Boussinesq 
approximation

 This eliminates density as a variable

 However, momentum and energy are coupled





 



TT



 1

(f)

   TT (2.28)

    VvppTTg
Dt
VD 


21
 


 

 (2.29)
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2.9 Boundary Conditions 
(1) No-slip condition

0yAt surface,

or

(2) Free stream condition

 Far away from object, assume uniform velocity

 Example:

u yUniform     at           :

Uniform temperature:

(3) Surface thermal conditions

0),,0,( tzxV


(2.30a)

0),,0,(),,0,(),,0,(  tzxwtzxtzxu v (2.30b)

 Vtzxu ),,,( (2.31)

 TtzxT ),,,( (2.32)

56

Example 2.4: Heated Thin Liquid Film Flow 
Over an Inclined Surface 

(i) Specified temperature 

(ii) Specified heat flux

g


x

y

u
oq 

oT
 Uniform flux      at free 

surface 
oq 

 Axial flow by gravity, thin 
film

oT
 Uniform plate 

temperature  

 Write the velocity and thermal boundary conditions 

sTtzxT ),,0,( (2.33)

oq
y

tzxT
k 





),,0,(

(2.34)
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(1) Observations
 No slip condition at inclined plate

 Free surface is parallel to the inclined plate 

 Specified temperature at plate

 Specified flux at free surface

 Cartesian geometry

(2) Problem Definition.

Write the boundary conditions at two surfaces for   ,   and  u v T

(3) Solution Plan

 Select an origin and coordinate axes

 Identify the physical flow and thermal conditions at the 
two surfaces

 Express conditions mathematically
58

(4) Plan Execution

(i) Assumptions
 Constant film thickness

 Negligible shearing stress at free surface 

 Newtonian fluid.

(ii) Analysis.
Origin and coordinates as shown
(1) No slip condition at the inclined surface

(2) Parallel streamlines

(3) Negligible shear at free surface: for Newtonian 
fluid use (2.7a)

0)0,( xu (a)

0)0,( xv (b)

0),( Hxv (c)

59

















y

u

xyxxy
v (2.7a)

Apply (2.7a) at the free surface, use (c)

(4) Specified temperature at plate:

(5) Specified heat flux at the free surface: 

(iii) Checking
Dimensional check: Each term of (f) has units of flux.

(5) Comments 

0
),(





y
Hxu

(d)

oTxT )0,( (e)

oq
y

tzxT
k 


 ),,0,(

(f)
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2.10  Non-dimensional Form of the Governing 
Equations: Dynamic and Thermal 
Similarity Parameters

 Must select origin and coordinates 

 Why negative heat flux in (f)?

 Rewrite equations in dimensionless form to:
 Identify governing parameters

 Plan experiments

 Present results
 Important factors in solutions

 Geometry

 Dependent variables: u, v, w, p, T
 Independent variables: x, y, z, t

61

2.10.1 Dimensionless Variables

 Constant quantities:              ,      ,      ,  ,p T sT V ,L g

 Fluid properties:       k, , , ,pc

 Mapping results: dimensional vs. dimensionless

,L ,sT T V
 To non-dimensionalize variables:  use characteristic 

quantities  g,               ,

 Define dimensionless variables



 
V
V

V




2

)(



 


V

pp
p

 )(

)(








TT

TT
T

s

L
x

x 

L
y

y 
L
z

z  ,t
L

V
t  

g

g
g




(2.35)
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2.10.2 Dimensionless Form of Continuity 

 *1





























 LzLyLxLzyx

(2.36a)

2
2

2222222

2

2

2

2

2
2

1 



































L

zLyLxLzyx
(2.36b)





 

Dt

D
L

V

VLtD

D
Dt
D

)/(
(2.36c)

(2.35), (2.36) into (2.2c)

0*
*

 V
tD

D 


(2.37)
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2.10.3 Dimensionless Form of the Navier-
Stokes Equations of Motion

(2.35), (2.36) into (2.29) 

Re and Gr are dimensionless parameters (numbers)

*
1 2*****

2*

*

V
Re

PgT
Re

Gr

Dt

VD 


 (2.38)

 
2

3

v

LTTg
Gr w 


 ,   Reynolds number (2.39)

v
LVLV

Re  


 ,   Grashof number (2.40)
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2.10.4 Dimensionless Form of the Energy 
Equation

Two special cases:

(i) Incompressible, constant conductivity 

(2.35), (2.36) into (2.19) 

Pr and E are dimensionless parameters







Re
Ε

T
RePrDt

DT 21 (2.41a)




v

ckk

c
Pr

p

p




/

/ ,     Prandtl number (2.42)

)(

2







TTc

V
Ε

sp
,    Eckert number (2.43)
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2.10.5 Significance of the Governing Parameters

(2.35), (2.36) into (2.17) gives dimensionless 
*dissipation function

(ii) Ideal gas, constant conductivity and viscosity

(2.35), (2.36) into (2.22) 








































2

*

*2

*

*
* 2

yx

u v (2.44)

*
*

*
*2*

*

* 1 
Re
Ε

Dt

Dp
ΕT

RePrDt

DT
 (2.41b)

Governing equations (2.37), (2.38), (2.41) are governed by 
4 parameters: Re, Pr, Gr and E:

),,,;.,,( ***** EGrPrRetzyxfT  (2.45)
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NOTE
 Significance of parameters

 Prandtl number

 Grashof number

 Eckert number

 Reynolds number: viscous effect

: property, heat transfer effect

: buoyancy effect (free convection)

: viscous dissipation: high speed flow 
and very viscous fluids 

 Dimensional form: solution depends on

 6 quantities:             ,     ,      ,   ,p T sT V ,L g

,pc 5 properties       k, , , and  affect the solution 

 Dimensionless form: solution depends on

 4 parameters: Re, Pr, Gr and E

67

 Special cases:
 Negligible free convection: eliminate Gr 

 Negligible dissipation eliminate E.

 Significance of (2.45) and (2.46):

have bodiessimilar  llyGeometrica
etemperatur and velocity same the
same the are parameters the if solution

 Use (2.45) to:

 Plan experiments

 Carry out numerical computations

 Organize presentation of results

)PrRetzyxfT ,;,,,( *****  (2.46)
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2.10.6  Heat Transfer Coefficient: The Nusselt 
Number 

Express in dimensionless form: use (2.30) 

xNu Local Nusselt number

Nu Average Nusselt number

y

zxT

TT

k
h

s









),0,(

)(
(1.10)

*

***
* ),0,(

y

zxT
x

k

hx




 (2.47)

k
hx

Nux  (2.48)

k
Lh

Nu  (2.49)
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where

Recall
),,,;.,,( ***** EGrPrRetzyxfT  (2.45)

Thus

Special case: negligible buoyancy and viscous dissipation

For free convection with negligible dissipation we obtain

For the average Nusselt number


L

dxxhh
L 0

)(1 (2.50)

)EGrPrRexfNux  , , ,  = ;
*( (2.51)

)PrRexfNux  ,  = ;
*( (2.52)

)PrGrxfNux  , ; = *( (2.53)

),,,( EGrPrRef
k
Lh

Nu  (2.54)

70

Example 2.5: Heat Transfer Coefficient for Flow 
over Cylinders

Two experiments, different cylinders,  same fluid:

Experiment # 1           Experiment # 2

1D = 3 cm 2D = 5 cm

1V = 15 m/s 2V = 98 m/s

2441 h W/m2-oC 1442 h W/m2-oC

Compare results with correlation equation

Are experimental data accurate?

(1) Observations

n
D PrReC

k

hD
Nu D

0.6 (a)

 Compare data for     and     correlation (a)1h 2h

h Nu appears in definition of
71

h Fluid, C and n  are unknown, (a) does not give  

21 / hh Use (a) to determine ratio 

(2) Problem Definition.

Determine             using data and correlation (a)21 / hh
(3)  Solution Plan.

Apply correlation (a) equation to determine             and 
compare experimental data 

21 / hh

(4)  Plan Execution
(i) Assumptions 

 Correlation (a) is valid for both experiments

 Fluid properties are constant

(ii) Analysis 


VD

ReD Use                    into (a)
72
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hSolve for 

Apply (c) to the two experiments

and

Take ratio of (d) and (e)

nPr
VD

C
k
Dh

6.0










(b)

4.06.0

6.0

D

PrVkC
h

n


 (c)

4.0
1

6.0

6.0
1

1
D

PrCkV
h

n


 (d)

4.0
2

6.0

6.0
2

2
D

PrCkV
h

n


 (e)

4.0

1

2
6.0

2

1

2

1 

















D
D

V
V

h
h

(f)
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(iii) Computations

Substitute data for     ,     ,      and      into (f) 1V 2V 1D 2D

Experimental data for ratio 21 / hh

The two results are not the same 

Conclusion: Incorrect experimental data
(iv) Checking

Dimensional check: units of (f) are correct

4.0
)cm(3

)cm(5

)sm(98

)sm(15
4.06.0

2

1 











h

h
(g)

69.1
144

244

C-2m
W

C-2m
W

2

1 




















h

h
(h)
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2.11 Scale Analysis

Limiting check: If V1 = V2 and D1 = D2 , then                . 21 hh 
This is confirmed by (f)

Qualitative check: If V is increased,     should 
increase.  This is substantiated by (c).

h

(5) Comments

 Critical assumption: correlation (a) applies to both 
experiments

 Analysis suggests an error in the experimental data

 More conclusive check can be made if C, n and fluid are 
known

results eapproximat obtain to Procedure
equations solvingwithout  magnitue) of(order  
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Example 2.6: Melting Time of Ice Sheet

ix

0

xL

solid

liquid

oT

fT
 Other side is insulated

 Conservation of energy at 
the melting front:                            

 Ice sheet thickness L 

fT At freezing temperature

fo TT  One side is at 

L = latent heat of fusion

ix melting front location

 Use scale analysis to determine total melt time

dt

dx

x

T
k iL



 (a)

76

(1) Observations

fo TT  Largest temperature difference is  
 Time is in equation (a)

 Scaling of equation (a) should be useful

Lxi  Entire sheet melts when

(2) Problem Definition

Determine the time            when ott  Ltxi )(

(3) Solution Plan

Apply scale analysis to equation (a)

(4)  Plan Execution

(i) Assumptions

 Sheet is perfectly insulated at x = L

 Liquid phase is stationary
77

(ii) Analysis
Equation (a) is approximated by

Select scales for variables in (a)

:T )( fo TTT Scale for   
:x Lx Scale for  
:ix Lxi Scale for 
:t ott Scale for   

Substitute into (a)

Solve for melt time to

t

x

x

T
k i








 L (b)

o

fo

t

L

L

TT
k L

 )(

)(

2

fo
o TTk

L
t




L
(c)
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(iii) Checking

Dimensional check: Each term in (c) has units of time:

s
TTk

L
t

fo
o 




))()((

)()()( 2

CCW/m-

mJ/kgkg/m
oo

23 L

Limiting check: 
(1) If L is infinite, melt time is infinite. Set in 

(c) gives 
L

ot

0ot
(2) If thickness is zero, melt time should vanish. Set L = 0 

in (c) gives 

Qualitative check: 

otExpect     to:

Directly proportional to mass, L and L, and 
k )( fo TT Inversely proportional to 

This is confirmed by solution (c)
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(5) Comments

ot is estimated without solving governing equations

 Exact quasi-steady solution

 Scaling answer is within a factor of 2 

)(2

2

fo
o TTk

L
t




L
(d)
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