CHAPTER 2
DIFFERENTIAL FORMULATION
OF THE BASIC LAWS
2.1 Introduction

o Solutions must satisfy 3 fundamental laws:
conservation of mass
conservation of momentum
conservation of energy

Differential formulation: application of basic laws
to differential element

2.2 Flow Generation

(i) Forced convection: by mechanical means(fan, blower,
nozzle, jet, etc.)

(ii) Free (natural) convection: due to gravity and density
change

2.3 Laminar vs. Turbulent Flow

u turbulent ¥ {
t t

(a) (b)
Fig. 2.1

Laminar: No random fluctuations

Turbulent: Random fluctuations

Transition from laminar to turbulent:

Transition Reynolds number, depends on

o flow geometry

e surface roughness
e pressure gradient
e etc.

Flow over flat plate: =~ 500,000
Flow through tubes: =~ 2300

2.4 Conservation of Mass:

The Continuity Equation
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2.4.1 Cartesian Coordinates

it
), +—2Ldy
y .
2 ity + i dx
d) My ox
ly V\/\r‘;y N
. S,

(a) (b)
Fig.2.2
Rate of mass added to element -
Rate of mass remove fromelement= @0
Rate of mass change within element
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Assume continuum, use Fig. 2.2b, and (2.1)

. . . . Omy
Tk gty i = Hi -

Ot Orit
. v . z _Om
|:my +—6y dyi| +|:mz + % dzi| o

Express (a) in terms of density and velocity

m = pVA
Apply (b) to element
ity = pudydz
tity, = pvdxdz
i, = pwdxdy

@)

()

©
@

©

Mass m of element

m = pdxdydz

(e)=(D) into (a)

%+6%(pu)+%(pv)+£(pw)=0

e (2.2a)is the continuity equation

Alternate forms:

‘lp+u"’£++v"’£+w"’£+p["’l+@+@
ot Ox dy 0z ox Ox Ox
or

Dp -

ZLipv-V=0

Dt p

K

(2.2a)

(2.2b)

(2.20)
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or 5
a—/: +V-pV =0
Special case: constant density (incompressible fluid)
bo_,
(2.2¢) becomes Dt
V-V=0

2.4.2 Cylindrical Coordinates

(2.2d)

23)

op 10 190 0
6—’:+;5(prv,)+;a—g(pvg)+a—z(pvz)=0 @4

2.4.3 Spherical Coordinates

op 10( o )+ 1 9
"1 rsing 50

1 9
(pvgsi (ov4)=
(ovg smﬂ)+rsinga¢\pv¢) 0 2.5

Example 2.1: Fluid in Angular Motion

Shaft rotates inside tube
Incompressible fluid

No axial motion

Give the continuity equation

Zan

Solution
(1) Observations

e Cylindrical coordinates
. No variation in axial and angular
directions

(2)'PrJHf‘e9ﬂlﬁlé‘}§ﬁiiw&p“§mplify the 3-D continuity

(3) Solution Plan.
Apply the continuity equation in cylindrical coordinates




(4) Plan Execution
(i) Assumptions
e Incompressible
e No axial motion
e Shaft and tube are concentric (axisymmetric, no
angular variation)

(ii) Analysis. Start with (2.4):

p 10 10 4
a—’:+;5(/’rvr)+;%(/"’0)+£(/"’z)=0

Simplify
Incompressible fluid: 2 is constant, Z—f =0
No axial velocity: v =0

Axisymmetric: i =0
o6

24
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(2.4), gives z(I'V,)= 0
or

Integrate rv,=C

C'= constant of
integration

Boundary condition:  v,.(r,,0)=0

Use (b) Cc=0

(b) gives v,=0
(iii) Checking

Dimensional check: Each term in (2.4) has units of
density per unit time.

(5) Comments

(a)

(b)

©

(@

2.5 Conservation of Momentum:
The Navier-Stokes Equation of Motion

2.5.1 Cartesian Coordinates

e Momentum is a vector
quantity —
e Newton’s law of motion: ﬂm
3 components
e Apply Newton’s law to
element, Fig. 2.5
z Fig.2.5

Y 6F =(dm)i

()




d = acceleration of the element

SF = external force on element

Jm = mass of the element

x-direction: Y. 6F,=(dm)a,
Mass om Sm = pdxdydz
Total acceleration a,
du_Du_ Ou 6 Ou
a,=—=—=u—+v_—
dt Dt ox Oy

(¢) and (d) into (b)

Ou

+w—+

(24

Du
S8F, = p=—dxdyd:
2OF, P Pedydz

u
ot

(b)

©

(@

(©)
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External x-forces:
(i) Body force (gravity)

(ii) Surface force

Fig. 2.6

Total forces
YO3F, =33 F, )}mdy +23F, ).vmface

Gravity force: Y.0F, )l; ody = PExdxdydz
Surface forces:

o, = normal stress on surface dydz

®

®)

7,x = shearing (tangential) stress on surface dxdz

7, = shearing (tangential) stress on surface dxdy

Summing up x-forces, Fig. 2.6

] or,. 8
Z 5Fx surface = [% + Fy + aLzu]dxdydz

Substituting (f), (g) and (h) into (e)

x-direction:
00, Oty 07,

Du _ +90xx +
P =P8 Ty T e

Similarly, for y and zdirections

J-direction:
Dy 6rn, 6ayy 6r,J,
—=pg, t—F—+—=
P P8 e Ty e

(h)

(2.62)

(2.6b)




zdirection:

Dw or,. 07, oo
“=pg Ny B @60
P P85 o Ty e ‘

Unknowns in (2.6), 13:
Uy Vo Wy P50 350 15 O oo Ty TynsTags Ty T Ty
However

=17,

px ? T

Txy xx Tl 0 Ty =Ty @
Reduce number of unknowns:

Use empirical relations called the constitutive equations

Ty =T, 6v o ou @.72)
o =T =M e oy
Tp =Ty = ,u(g: +Z—I:J @.7b)
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iiw
6y
ou

2
=—p+2u——=uv-v
14 /‘a 3
o 2 -
=—p+2u——--uv-v
Oy ="P /‘ay 3/‘
ow 2 -
=—p+2u——--uv-v
= p l‘az 3/‘

Fluids obeying (2.7) are Newtonian fluids
Substitute (2.7) into (2.6 )

%, 9[”[291_EV.V
ox oOx

ox 3

ool

+

f
+

o Eqs. (2.8) are the Navier-Stokes equations of motion
e Unknowns are 6: u, v, w, p, P> 1
o Restrictions: continuum and Newtonian fluid
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x-direction:
Vector form of (2.8x), (2.8y) and (2.82) Eq. (2.9) is valid for: (1) continuum, (2) Newtonian (3) ou ou ou ou
4 > > 5 iscosity. —tu—+v_—+w_—|=
pﬂ = pg—-Vp+ EV(/IV . V)+ V(V . V”)_ VVZ/.I + cmlllstant v1sc051t-y . ) P( ot ox oy az]
Dt 3 (i) Constant viscosity and density N ) )
VI‘X(VXV)— (V'V)VI‘—VX(V"I‘V) @8 Continuity equation (2.3) P8 —a—p+y[a—t;+a—?+a—?] (2.10x)
Simplified cases: V.P=0 @3 zdirection: R
(i) Constant viscosity (2.3) into (2.9) p[aal + ugj +y %" + waal] _
) > t x y z
Vu=0 0] DV _ s Vit vy 2.10
and P Dt PEZYPTH @19 P 8p+ [82w+82w+82wJ @10y
. _ _ . _ 7 T A S T 5 10y’
Vx (Vx,uV): V(V-,uV)—V-V,uV = ,uV(V-V)—,uVZV (&) Eq. (2.10) .is va!id for: (1) continuur.n, (2) Newtonian (3) y=direction: oz o oyt o
(i) and (k) into (2.8) constant viscosity (4) constant density 4 al . ual . al . wal] _
DV 1 - . The 3-components of (2.10): o ox Oy (24
p;:% —Vp+§ﬂV(V-V)+‘uV V .9) % ap+” azv+azv+azv ron
— 5 4 5 .10z
Yooy a?r gyt 8t N
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2.5.2 Cylindrical Coordinates

Assumptions: Continuum, (2) Newtonian fluid, (3) constant
viscosity and (4) constant density.
r-direction:
v, velv, V92 ov, Ov,
plv. +EL Lty + =
or r 80 r “ o0z ot
o, |0(10 19%, 20v, 8%,
B 7 e +——r -
B~y [ar(rar(rv')] 2 90 1208 3zt
9 -direction: (2.11r)
plv, 2o oD _Yive, , g o)
or r 06 r “or ot
18p (18 18%g , 20v, 8%vg
——Ztul |- +— +=——L+
PPy "[ar(rar(rv")) o0 206 o
@ne

z-direction:

Ov, vyov, ov, Ov,
plv, Ty, L=
or r 96 oz ot

_@_,_ 19 ravz +i62v1+62v1
Aot v or )T 00 T a2

2.5.3 Spherical Coordinates
Assumptions: Continuum, (2) Newtonian fluid, (3) constant
viscosity and (4) constant density.
r-direction:

p[v CLTINT LTSN 6“r-7v"2+v”z+aw}=

2.112)

"or  r 86 rsing o r o

op 2 2 2 dvg 2vgcotl 2 vy
P vy oy 2% 2VetlU - T4
o "[ TR T80T 7 Pino 09

g -direction:
2
dvg vgdvg_ Vg Ovg v,ve V¢ cotd g |_
AV o T 0 rsind 0 T ¢ PERETER

o
,,gg_lalu[vzvﬁiﬁ_via_ﬂﬁ]
r

00 r2 08 trsin’g rlsin’g 09
2.116)
¢ -direction:
d v d
A0 28,5628, v Bg ver vevs 0
or r 060 rsinf o¢ r r ot
1 op
- =+
e rsiné 0¢
2 Vg 2 0v,  2cosf dvg
HVivg— + +
[ ¢ r*sin?@  r’sin’@ 04 r’sin’0 O
2.11¢)
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Where y2is
2 1020 10 (Gnpd 1
2 ar[' ar}'rz sinaaaks'“”aﬂ)+r2 sin? 0 0g?
Example 2.2: Thin Liquid Film Flow Over an
Inclined Surface
e Incompressible

o Parallel streamlines.

o Write the Navier-Stokes
equations

(1) Observations
e Flow is due to gravity
o Parallel streamlines: v=10
o Surface pressure is uniform (atmospheric)
e Cartesian geometry

(2.13)

(2) Problem Definition.
Simplify the x and y components of the Navier-Stokes
equations

(3) Solution Plan.
Start with the Navier-Stokes equations in Cartesian
coordinates and simplify for this case

(4) Plan Execution
(i) Assumptions
e Newtonian
steady state
flow is in the x-direction only
constant properties
uniform ambient pressure
parallel streamlines

(ii) Analysis
Start with (2.10x ) and (2.10y)
Ou Ou Ou
pl —+u—+v—+
ot ox Oy
o
pgx ax
ov ov ov
—tu—+v—
ot ox oy
ap +

o
Gravitational acceleration:

g.=gsind -

ou
w | =

0z

x? gt &t
o

oz

v 8%y 9%y
oot o

g, =—gcosé

)

(2.10x)

(2.10y)

@)




Simplifications:
Steady state: ('Lu = o =
ot ot
Axial flow (x-direction only):
w= 2 =0
oz
Parallel streamlines: v=0

(a)-(d) into (2.10x) and (2.10y)
ua—u= sin@ —a—p+ Ou +&
p ox pg ox axz ayz

0= —pgcosa—a—p
oy

and

(f) is thy y-momentum equation

(b)

©

(@

(e)
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Simplify (e) using continuity (2.3)

ypdu v 0wy
ox 0Oy 0z
(c) and (d) into (g)
ou
o0
ox
e sing-22 4,01
P8 ox H ay;
Integrate (f)

p=—(pgcosd)y+ f(x)
1(x) = “constant” of integration

At free surface, y = H, pressure is uniform equal to P .

Set y=H in (j)
F(x)= po+ pgH cosO

(€4

(h)

@

[0}

(k)

(K) into (j)
p=pg(H-y)cod+p, 0
Different (k)
6—1, =0 (m)
ox
(m) into (i)
. d’u
pgsind+p——=0 (m)
dy

This is the x-component
(iii) Checking
Dimensional check: Each term in (f) and (n) must have
same units:
pgcos § =(kg/m’)(m/s?) = kg/m’-s?

op_Nmi N _kg-ml§ g
0y m m m

10



pg sin 0= kg/m?-s*

d’u

2" (kg/m-s) ﬂ}kg/mhsz
dy m

2

Limiting check: For zero gravity fluid remains stationary.
Set g =0 in (n) gives

d2
uz =0 (0)
dy
Solution to (0): u =0, .. fluid is stationary
(5) Comments

o Significant simplifications for: For 2-D incompressible,
parallel flow

e The flow is 1-D since z depends on y only

2.6 Conservation of Energy: The Energy Equation

g

2.6.1 Cartesian Coordinates

>X

z Fig. 2.5

Energy can not be created or destroyed

Apply to element dxdydz

A B
Rate of change of
internal and Kinetic
energy of element

C D
Net rate of heat —  Net rate of work done by
addition by conduction element on surroundin gs

— Net rate of internal and Kinetic 4
energy transport by convection

Express each term in (2.14) in terms of temperature
(Appendix A)

Explain physical significance of each term
Result is called the energy equation

Assumptions

(2.14)

11/4/2020
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e Continuum
e Newtonian

o Negligible nuclear, electromagnetic and radiation energy

(1) A = Rate of change of internal and kinetic energy of
element

o Internal energy of element depends on temperature
(thermodynamic)

o Kinetic energy of element depends on velocity (flow
field)

A =§Lj(ﬁ +1? /2)]dxdydz (A1)

11/4/2020

(2) B = Net rate of internal and Kkinetic energy by convection

o Internal energy convected through sides with mass flow.
Depends on temperature

e Kinetic energy convected through sides of element with
mass flow. Depends on velocity
B=-{.[@a+V?/2) p¥ | jaxdyaz @2
(3) C = Net rate of heat addition by conduction

e Conduction at each surface depends on temperature
gradient
e Apply Fourier’s law (1.6)

C=—(V.q")dxdydz (A-3)

(4) D = Net rate of work done by the element on the
surroundings

‘ Rate of work =force x velocity ‘

aor
Tt —dr
/ oz

oo,
> O +—=dx
ox

12
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o 18 surface forces (Fig. 2.6)
e 3 body forces (gravity)
e Total 21 forces at 21 velocities

D= —p(V . g)dxdydz—l:ai(uaxx +V Tay W)+
x

%("Tyx Vo, + W’yz)“'a%("’zx VT + wa-zz)i|dxdydz

A-7)
Substitute (A-1), (A-2), (A-3) and (A-7) into (2.14)

ol o t2)] v (s}

— S 0
-V-q +p(V-g)+|:a—x(ua'xx VTt WTyr)+

K
o

i
Uty +voy, +wr), )+ é("’“ +vTgy+ wazz):l (A-8)

Simplify using:

e Fourier’s law (1.6)
Continuity equation (2.2)
Momentum equations (2.6)
Constitutive equations (2.7)

T

pe, 2L V~kVT+ﬂT%+y(D

’pr
where

Thermodynamic relations for #and h

(2.15)

B = coefficient of thermal expansion (compressibility)

e pis a property

gl
P

@ = dissipation function (energy due to friction)

7,

(2.16)

2 2 2
{5}
ox dy oz
|:[6u BVJZ [6\/ 6w]2 (6w 6u)2:|
—+— | =t +—+=]| |-
dy ox oz Oy ox 0z

2ou o0 ow?
3\ox oy oz @1n

e @ is Important in high speed flow and for very viscous
fluids

2.6.2 Simplified Form of the Energy Equation

(a) Cartesian Coordinates

e Use (2.15)

e Assumptions leading to (2.15):

13
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e Continuum
e Newtonian

o Negligible nuclear, electromagnetic and radiation
energy transfer
o Special cases

(i) Incompressible fluid

and

DT
c,—=V-kVNT+u®
PEp Di H
(ii) Incompressible constant conductivity fluid
(2.18) is simplified further constant &:

(2.18)

DT
pcp e

=kVT+u®d
Dt #

or

ot ox dy oz

(iii) Ideal gas p

= kT

(GT or . orT 6T) [62T T 8T
pep| —+u—+v—+w— |=k| —+—+

2 5_}’2

op 1

(2.20) into (2.16) 1( J 1 p 1
or), pPRT* T

P
(2.21) into (2.15)

T Dp
— =V UVT+—+u®@
Pr o

Using continuity (2.2¢) and (2.20)

D—j:V-kVT—pV-V+/1¢

pe, D

(2.192)

+po
(2.19b)

(2.20)

@21

(2.22)

(2.23)

(b) Cylindrical Coordinates
Assume:

Continuum
Newtonian flui

d

Negligible nuclear, electromagnetic and radiation energy

transfer

Incompressible fluid
Constant conductivity

[6T
pepl ——+v

1

where

oT vgdT
o Yool
ot "or r 86

[l

8t

o?

)
+v,—|=
“ oz

13(,61}315
ror_ or) ,*p6%

:|+,u¢

(2.24)

14
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2 2 2
ﬂ:z[av’) +2[1av—0+v—’J +2 & +
or rog r 0z

2
avg_ve 10v, Y (18v, avy
o r roe roe o

oz or
(¢) Spherical Coordinates

Assume:

e Continuum

e Newtonian fluid

e Negligible nuclear, electromagnetic and radiation energy
transfer

e Incompressible fluid

e Constant conductivity

2
+ (a”' + %J @25

or OT ve¢OT vy OT
pey| —tv, —+—Ft—+—C—
ot or r 0 rsing 06

k| ; [sin 9 61] +
r2sin $0p 09

where

2
o2 [%JZJ, 12g v )" (1 dvg ve Yecotd
or rog r rsing 660

a)]
r—| £ +=2L +
or\ r r 8¢

sin¢6(vg . 1 ovg 2+
r 6¢krsin¢ rsing 00

Example 2.3: Flow Between Parallel Plates
o Axial flow with dissipation

e Assume: y A
I

Newtonian I X

Steady state

Constant conductivity
Parallel streamlines

e Write the energy equation
(1) Observations
e Parallel streamlines: v=0

L]
(]
¢ Constant density
L]
(]

e Incompressible, constant k&
o Include dissipation
e Cartesian geometry

15



(2) Problem Definition
Determine the energy equation for parallel flow

(3) Solution Plan
Start with the energy equation for constant 2 and k in
Cartesian coordinates and simplify

(4) Plan Execution
(i) Assumptions
e Newtonian
e Steady state
e Axial flow
e Constant 2 and k

e Negligible nuclear, electromagnetic and radiation
energy transfer

e Parallel streamlines.
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(ii) Analysis. Start with energy equation (2.19b)
ar ar ar _ ar\_ (8T 8T T
pep| —+u—+v—+w— =k —+—+—
o ox o o’ ot ot
where

2 2 2
ou ov ow
=l[* o o
e [(ax) +(ay] %) }'
u v\ (ov ow)? (aw aujz
| | = == |-
d ox 0z Oy ox 0Oz

2ou v ow)?
2(ou, ov_ ow
3\ox oy oz

o _,
ot

However
Steady state:

+p0

(2.19b)

@17)

(a)

Axial flow:

Parallel flow:

0
Ww=—=
%4
v=0

(a)-(c) into (2.19b) and (2.17)

or

pepu—=k

ox

2 2
D= Z[a—uj + u
ox Oy

Further simplification: use continuity (2.3)

\" 14
(b) and (c) into (f) gives

P

a’T o'T
ax? 6y2

]+p¢

_2
3

(

ou
ox

. Ou 0Ov ow
e ey |
ox 0y 0z
ou_
ox

7]2

(b)

©

(@)

(e

16



Ou 2
(g) into (e) D= [—] (h)
oy
(h) into (d) gives the energy equation
or (21 1) (ouY .
pepu—=k St |tH @
ox ox* oy oy

(iii) Checking
Dimensional check: Each term in (i) has the same
units of W/m?>

Limiting check: For no fluid motion, energy equation
reduces to pure conductiwns et in (i)

o’ " 6y2 =0
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(5) Comments

e In energy equation (i), properties €.k, p and 4
represent fluid nature

e Velocity urepresents fluid motion

e Last term in (i) represents dissipation, making (i) non-
linear

2.7 Solutions to the Temperature Distribution
Governing equations: continuity (2.2), momentum (2.8)
and energy (2.15)

TABLE 2.1
q No. of
Basic law Equations Unknowns

Energy 1 T lulv |w P ||p
Continuity 1 ulv |w Vol
Momentum 3 ulv  w|pllpliu
Equation of State 1 T P
Viscosity relation 1 T P M

H=pp,T)

Conductivity relation
k=k(p,T) i |4 ’

o Solution consideration: Table 2.1 Equation of state
gives €pand ¢, and §

17



(1) General case: variable properties
e 8 unknowns: 7; u, v, w, pp, u, k,8 eqs. (yellow box)
o 8 eqs. solved simultaneously for 8 unknowns

e Velocity and temperature fields are coupled.
(2) Special case 1: constant k and X4
e 6 Unknowns: 7, u, v, w, pp , 6 eqgs., see blue box

® 6 eqs. solved simultaneously for 6 unknowns
(3) Special case 2: constant k , 4 and p
e Sunknowns: 7, u, v, w, p, 5 eqs., see red box

o However, 4 unknowns: u, v, w, p, 4 eqs., give flow field,
see white box

Velocity and temperature fields are uncoupled
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2.8 The Boussinesq Approximation

e Free convection is driven by density change

e Can’t assume £ = constant

e Alternate approach: the Boussinesq approximation

o Start with N-S equations for variable p

p%‘f =pg-Vp +§#V(V V)t uvv @9
e Assume:
(1) P = Pwin inertia term
(2) P = Pwin continuity, ... V.V =0
(2.9) becomes
pw%f=P§-V1'+uV’V @

(e Reference state (far away from object) where

V,, = uniform, % =V, =0 (b)
t

Apply(a) at infinity , use (b)

Puod~ VP =0 ©
Subtract (c) from (a)

DV _ _
P =(P=Pu)e=V(p=pa)+ VY @
(3) Express (P ~ Pw») in term of temperature difference.
Introduce g
1|{0p
p=——|% (2.16)
pLorT],
Assume, for free convection o(T, p) = p(T)
ﬂ ~ _L dl (e)
Po AT

18



For small AT, is linear p(T')

1 p-p
Br——"—2 ®

Po T-T,
P=Po=-BpPo(T-T,) @)

Substitute (2.28) into (d)
DV ~ 1 25
—=- Tr-T,)-—Vip- +vVYV 229)
o = PET-T) PR (P—po)+v

o Simplification leading to (2.29) is called the Boussinesq
approximation

o This eliminates density as a variable

e However, momentum and energy are coupled
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2.9 Boundary Conditions
(1) No-slip condition
At surface, y =0
V(x,0,2,£) =0
or
u(x,0,z,t) =v(x,0,2,t) = w(x,0,2,¢) =0
(2) Free stream condition

e Far away from object, assume uniform velocity

e Example:
Uniform uaty=oc0:
u(x,00,z,t)=V,
Uniform temperature:
T(x,0,z,t)=T,

(3) Surface thermal conditions

(2.302)

(2.30b)

(2.31)

(2.32)

(i) Specified temperature
T(x,0,z,t)= Ts
(ii) Specified heat flux
—k 0T (x,0,z,t) -7
o
Example 2.4: Heated Thin Liquid Film Flow
Over an Inclined Surface
o Axial flow by gravity, thin / v,
film
e Uniform plate
temperature 7,
o Uniform flux ¢, at free
surface

e Write the velocity and thermal boundary conditions

(2.33)

(2.34)
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(1) Observations
e No slip condition at inclined plate

o Free surface is parallel to the inclined plate
e Specified temperature at plate
o Specified flux at free surface
o Cartesian geometry
(2) Problem Definition.
Write the boundary conditions at two surfaces for #,vand T
(3) Solution Plan
e Select an origin and coordinate axes

o Identify the physical flow and thermal conditions at the
two surfaces

o Express conditions mathematically

(4) Plan Execution
(i) Assumptions
e Constant film thickness
o Negligible shearing stress at free surface
e Newtonian fluid.
(ii) Analysis.
Origin and coordinates as shown
(1) No slip condition at the inclined surface

u(x,0)=0

v(x,0)=0
(2) Parallel streamlines

v(x,H)=0

(3) Negligible shear at free surface: for Newtonian
fluid use (2.7a)

@)
(b)

©

_ _ fov  ou
Ty =Ty = M a—x+5

Apply (2.7a) at the free surface, use (¢)
Ou(x,H) _ 0

(4) Specified temperature at plate:
T(x,0)=T,

(5) Specified heat flux at the free surface:

0T (x,0,z,¢ "
_; T (x0.2,0) -
oy
(iii) Checking

Dimensional check: Each term of (f) has units of flux.

(5) Comments

(2.7a)

@

(©)
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e Must select origin and coordinates

o Why negative heat flux in (f)?

2.10 Non-dimensional Form of the Governing
Equations: Dynamic and Thermal
Similarity Parameters

o Rewrite equations in dimensionless form to:

o Identify governing parameters
e Plan experiments
e Present results
* Important factors in solutions
e Geometry
e Dependent variables: u, v, w, p, T
o Independent variables: x, y, z ¢

o Constant quantities: py, T, ,T, sV, L, &

o Fluid properties: ¢, k, B, i1, p
e Mapping results: di 1 i

vs. d ionl

2.10.1 Dimensionless Variables

e To non-dimensionalize variables: use characteristic
quantities g, L,T,, T ,V,
e Define dimensionless variables

gV P PmPe) e (T-To)
Voo pwsz T -T5)
x‘=% y‘=% z‘=% t‘=VT"t,
g =£ (2.35)
g

o 0 o_ 8 E) 9 1_s
=—+—+_—= +—t——=—
ox Oy 0 Lax* Loyt Lot L

oot e o o _,. 2

VZ

= +
o’ 6yz ot Pox*? th'iy'z 26:*?
_1loe
_FV

b__ Db VoD
Dt ptt/v,) L Dt

2.10.2 Dimensionless Form of Continuity
(2.35), (2.36) into (2.2¢)

+pVP =0

¥

(2.36a)

(2.36b)

(2.36¢)

(2.37)
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2.10.3 Dimensionless Form of the Navier-
Stokes Equations of Motion

(2.35), (2.36) into (2.29)

nr e? e
Re and Gr are dii jonless par: s (numbers)
3
Gr= B (Tw _sz )L , Reynolds number
v
Re= PVl = Vol , Grashof number
u v

(2.38)

(2.39)

(2.40)
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2.10.4 Dimensionless Form of the Energy
Equation
Two special cases:
(i) Incompressible, constant conductivity
(2.35), (2.36) into (2.19)
E

DI*_ 1 gupe, E g
Dt*  RePr Re

Prand E are di jonless par: s
¢
Pr:Lﬂ= /l/p =1
k  kipe, o«
V.,

T, (T -Ty)

,  Prandtl number

Eckert number

(2.41a)

(2.42)

(2.43)

(2.35), (2.36) into (2.17) gives dimensionless
dissipation function "

oY (o)
o =2 | 2| | re @44
Oox oy

(ii) Ideal gas, constant conductivity and viscosity

(2.35), (2.36) into (2.22)
DT ___ 1 g gl [ E o (@41b)
Dt RePr Dt Re

2.10.5 Significance of the Governing Parameters
Governing equations (2.37), (2.38), (2.41) are governed by
4 parameters: Re, Pr, Gr and E:

T = f(x*,y*,z*.t*; Re, Pr, Gr, E) (2.45)
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NOTE
o Significance of parameters
* Reynolds number: viscous effect
e Prandtl number: property, heat transfer effect
o Grashof number: buoyancy effect (free convection)

e Eckert ber viscous dissipation: high speed flow
and very viscous fluids

* Dimensional form: solution depends on

® 6 quantities:p,, T, T, W, L, &

o 5 properties ¢, k, B, u, and p affect the solution
e Dimensionless form: solution depends on

e 4 parameters: Re, Pr; Gr and E

e Special cases:
o Negligible free convection: eliminate Gr

e Negligible dissipation eliminate £.
T"=f(x",y",2",t"; Re, Pr) (2.46)
o Significance of (2.45) and (2.46):

Geometrically similar bodies have
the same velocity and temperature
solution if the parametersare the same

o Use (2.45) to:
e Plan experiments

e Carry out numerical computations

e Organize presentation of results

2.10.6 Heat Transfer Coefficient: The Nusselt
Number
n=_—k 0T(x0,2) w10
(I-T.,) oy
Express in dimensionless form: use (2.30)

hx_ 20T (x"0,57)

fhind > (2.47)
k 0y
o Local Nusselt numberiNu,
Nu, = hx (2.48)
k
e Average Nusselt numberNu
~ _hL
Nu=— 2.49)
% (2.49)
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where -~ L
h =:Io h(x)dx (2.50)
Recall . e e s
T =f(x,y,z.t;Re, Pr,Gr, E) (2.45)
Thus
Nu, = f(x"; Re, Pr,Gr, E) (2.51)
Special case: negligible buoyancy and viscous dissipation
Nu, = f(x"; Re, Pr) (2:52)
For free convection with negligible dissipation we obtain
Nu, = f(x*;Gr, Pr) (2.53)
For the average Nusselt number
Nu= % = f(Re,Pr,Gr,E) (2.54)
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Example 2.5: Heat Transfer Coefficient for Flow
over Cylinders

Two experiments, different cylinders, same fluid:

Experiment # 1 Experiment # 2
D;=3cm Dy =5cm
Vi =15m/s V), =98 m/s

Iy =244 W/m2-°C h, =144 W/m?-°C
Compare results with correlation equation
Nup = % =CRe}epr" (a)
Are experimental data accurate?

(1) Observations
o Compare data for i and 172 correlation (a)

o 1 appears in definition of ‘Nu

e Fluid, C and n are unknown, (a) does not give /i
o Use (a) to determine ratio El / 712

(2) Problem Definition.

Determine h, / h, using data and correlation (a)

(3) Solution Plan.

Apply correlation (a) equation to determine le / Ez and
compare experimental data

(4) Plan Execution
(i) Assumptions
o Correlation (a) is valid for both experiments
¢ Fluid properties are constant
(ii) Analysis

Use Re, =? into (a)
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- 0.6

hD _ C| (QJ Pr"

_ k v

Solve for h

_C Kk v"pe"
U6 o4

Apply (c) to the two experiments

=

—_ckv"Spr"
| = kPt
V0.6 D10.4

N

hy =
VO.& D20.4
Take ratio of (d) and (e)

(b)

©)

@

(©

(iii) Computations
Substitute data for V;,V,, D, and D, into (f)

I3 =[ 15(m/s) i|0'6|:5(cm)]0'4 o4 ©
hy [98 (mfs) 3(cm)

Experimental data for ratio I, / h,

244( N j

1L__ \m"-"C/)_{69

2 144( ;V
m~--"C

The two results are not the same

=

(h)

=

Conclusion: Incorrect experimental data
(iv) Checking
Dimensional check: units of (f) are correct

Limiting check: If V,= V,and D,= D,, thenh | =h, .
This is confirmed by (f)

Qualitative check: If V is increased,; should
increase. This is substantiated by (c).

(5) Comments

o Critical assumption: correlation (a) applies to both
experiments

o Analysis suggests an error in the experimental data

e More conclusive check can be made if C, n and fluid are
known

2.11 Scale Analysis

Procedure to obtain approximate results
(order of magnitue) without solving equations

25



Example 2.6: Melting Time of Ice Sheet

11/4/2020

Ice sheet thickness L g X

At freezing temperature T I 25 SOhd\
- X

Onesideisat 7, > T, L bt T,

Other side is insulated l T

Conservation of energy at 0 r T

the melting front:

oT dx;
ki
ox p dt

X; = melting front location
L = latent heat of fusion

Use scale analysis to determine total melt time

o

(@)

(1) Observations
* Entire sheet melts when x; = L
e Largest temperature difference is 7, — T,
e Time is in equation (a)
o Scaling of equation (a) should be useful
(2) Problem Definition
Determine the time 7 =7, when X;(f)=L
(3) Solution Plan
Apply scale analysis to equation (a)
(4) Plan Execution
(i) Assumptions
o Sheet is perfectly insulated at x =L

e Liquid phase is stationary

(ii) Analysis
Equation (a) is approximated by
—k AT _ oL Ax;
Ax At

Select scales for variables in (a)

Scale for AT: AT ~(T,-Ty)
Scale for Ax: Ax~L

Scale for Ax; : Ax; ~L
Scale for Ar: Ar~i,

Substitute into (a)

T,-T,
k( o =Tr) ~p L£
L t,
Solve for melt time 7, N
pLL
* KT, -Ty)

(b)

©

26



(iii) Checking
Dimensional check: Each term in (c) has units of time:

(= PO L (') _
k(Wm-"C)(T, - T,)(°C)
Limiting check:
(1) If L is infinite, melt time is infinite. Set. = o0 in
(c) gives= 0
(2) If thickness is zero, melt time should vanish. Set L =0
in (c) givest, =0
Qualitative check:
Expect 7,to:
Directly proportional to mass, L and L, and
Inversely proportional to k (T, —7)
This is confirmed by solution (c)

(5) Comments
e 1,is estimated without solving governing equations
o Exact quasi-steady solution

pLI?

t, =—r —— d
* 2T, -Ty) @

e Scaling answer is within a factor of 2
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