CHAPTER 3

EXACT ONE-DIMENSIONAL SOLUTIONS
3.1 Introduction
o Temperature solution depends on velocity

e Velocity is governed by non-linear Navier-Stokes eqs.

o Exact solution are based on simplifications governing
equations

3.2 Simplification of the Governing Equations

Simplifying assumptions: yT

(1) Laminar flow I

|
(2) Parallel streamli X
v=0 3.1

Fig. 3.1

(3.1) into continuity for 2-D, constant density fluid:

a—u =0, everywhere 32)
ox
2
‘37‘2‘ -0 (3.3)
ox
(3) Negligible axial variation of temperature
61 =0, everywhere G4
ox
(3.4) is valid under certain conditions. It follows that
2
a—f =0 @3.5)
ox

(4) Constant properties: velocity and temperature fields are
uncoupled (Table 2.1, white box)

TABLE 2.1
Basic law E;ﬂ;t‘i):ns Unknowns

Energy 1 T |ul|v w P K
Continuity 1 ulv | w ol
Momentum 3 ulv  wipllplip
Equation of State 1 p
Viscosity relation 1 T P u

u=u(p,T)

Conductivity relation
k=k(p,T) i |d ’

Similar results are obtained for certain rotating flows.




Fig. 3.2: T r
o Shaft rotates inside sleeve

e Streamlines are concentric circles

e Axisymmetric conditions, no axial

variations
or
—=0 3.6
08
. Fig. 3.2
2
6772' =0 3.7
06

3.3 Exact Solutions
3.3.1 Couette Flow
e Flow between parallel plate

e Motion due to pressure drop and/or moving plate

e Channel is infinitely long

Example 3.1: Couette Flow with Dissipation

y T, U,
e Very large parallel — = S
plates o
o Incompressible fluid ¥ s

Upper plate at 7, moves with velocity U,

Insulate lower plate

Account for dissipation

Laminar flow, no gravity, no pressure drop

Determine temperature distribution
(1) Observations

o Plate sets fluid in motion

o No axial variation of flow

e Incompressible fluid

e Cartesian geometry

(2) Problem Definition.
Determine the velocity and temperature distribution
(3) Solution Plan

* Find flow field, apply continuity and Navier-Stokes
equations

e Apply the energy to determine the temperature distribution
(4) Plan Execution

(i) Assumptions

o Steady state

¢ Laminar flow

o Constant properties

o Infinite plates

e No end effects

e Uniform pressure

o No gravity




(ii) Analysis

Start with the energy equation

PL‘P[

@ is dissipation

au av
6y ox

6T

aw

z

]2+

(3.19b)

3.17)

Need u, vand w. Apply continuity and the Navier-Stokes
equations
Continuity

ox oy 0oz

LiwwZrw —
ot  ox oy 0z

Constant density

o, ,op p. 0P, [6;{ ov 6wi| 0
(2.2b)

o0 _op_op_do_,
ot ox & 0z

Infinite plates
0 0
—=—=w=0
ox 0Oz
(a) and (b) into (2.2b)
v
Integrate (c) G4

v =f(x)

(a)

(b)

©

@

f(x)is “constant” of integration

Apply the no-slip condition

v(x,0)=0 (e
(d) and (e) give
f(x)=0
Substitute into (d)
v=0 )

.. Streamlines are parallel
To determine & we apply the Navier-Stokes eqs.

Ou Ou Ou ou
pl=+ru—+v—+w—|=
o ox oy oz

o [6214 8%u 62u]
e~ —+—+— (2.10%)




Simplify:
Steady state 61 =0
ot
No gravity g.,=0
Negligible axial pressure variation
»_,
ox
(b) and (f)-(i) into (2.10x) gives
2
L;‘ -0
Solution to (j) is dy
u=Cy+0C,

Boundary conditions
u(0)=0 and u(H)=U,

(€3]

(h)

@

[0}

(k)

O.

(k) and (I) give

G =U, ad =0 (m)

(m) into (k) u _y
E 7 3.8)

o
Dissipation: (b) and (f) into (2.17)
2
-
Use (3.8) into (n)

2

=Y ®

2
Steady state: 9T /8¢t =0
Infinite plates at uniform temperature:
o _oT_
ot

Use above, (b), (f) and (o) into energy (2.10b)

2 2
k q +u U”z =0
Integrate dy H
2
HU, >
T=- Yy +Cyy+C
2 3 4
B.C. 2kH
_k@ =0 and T(H)=T,
y
B.C. and solution (q) give
2
au,

C;=0 and C,=T,+

T-7, _1 I_Lz
pu? 2\ H?

k

(s) into (q) 2k

)

@

)

)

3.9




Fourier’s law gives heat flux at y = H

g =k T
A
(3.9) into the above
2
q"([-[) = % (3.10)
(iii) Checking

Dimensional check: Each term in (3.8) and (3.9) is
dimensionless. Units of (3.10) is W/m?

Differential equation check: Velocity solution (3.8) satisfies
(j) and temperature solution (3.9) satisfies (p)

Boundary conditions check: Solution (3.8) satisfies B.C. (1),
temperature solution (3.9) satisfies B.C. (r)

Limiting check: (i) Stationary upper plate: no fluid motion.
Set U, =0 in (3.8) gives u(y) =0
(ii) Stationary upper plate: no dissipation, uniform
temperature 7}, no surface flux. Set &/, =0 in (0), (3.9) and
(3.10) gives @=0,7(» =T, and ¢"(H)=0
(iii) Inviscid fluid: no dissipation, uniform temperature 7,
Set =0 in (3.9) gives T =T,
(iv) Global conservation of energy: Frictional energy is
conducted through moving plate:

W = Friction work by plate

q"(H) = Heat conducted through plate

W=t(H)U, ®
where

7(H) = shearing stress

o) = p 0D ®
(3.8) into (u) . v,
(v) and (t) ) )_”F :
v) and (t )
w=HYs ™
H

(w) agrees with (3.10)
(4) Comments

o Infinite plate is key assumption. This eliminates xas a
variable

e Maximum temperature: at y =0 Set y =0 in (3.9)

2
T(0)-T, = "ZI;"




3.3.2 Hagen-Poiseuille Flow

eProblems associated with axial flow in channels
e Motion due to pressure drop

e Channel is infinitely long

Example 3.2: Flow in a Tube at Uniform
Surface Temperature

o Incompressible r } /7;, r
fluid flows in a 1 T
long tube [ —

e Motion is due to
pressure gradient Op/ 0z
o Surface temperature 7
e Account for dissipation
e Assuming axisymmetric laminar flow .

e Neglecting gravity and end effects
e Determine:
|a] Temperature distribution
[b] Surface heat flux
lel Nusselt number based on [T(0)—T, |

(1) Observations

Motion is due to pressure drop
Long tube: No axial variation
Incompressible fluid

Heat generation due to dissipation

Dissipated energy is removed by conduction at the
surface

Heat flux and heat transfer coefficient depend on
temperature distribution

o Temperature distribution depends on the velocity
distribution

e Cylindrical geometry

(2) Problem Definition.

Determine the velocity and temperature distribution.

(3) Solution Plan

o Apply continuity and Navier-Stokes to determine flow field

o Apply energy equation to determine temperature
distribution

o Fourier’s law surface heat flux
o Equation (1.10) gives the heat transfer coefficient.

(4) Plan Execution




(i) Assumptions
o Steady state

e Laminar flow
o Axisymmetric flow
* Constant properties
e No end effects
e Uniform surface temperature
o Negligible gravitational effect
(ii) Analysis
[a] Start with energy equation (2.24)

oL, 20, 0T,
PP e o0 e

2 2
M lﬁ(,al}_iﬂ_,_ﬂ +uo @.24)
ror\ o) 200% o

where 3 ) )
¢=2(6v’j +2[lav—”+v—’j +2 il +
or rog r oz

(%_m+16vr]’ +(1%+%)2 +[6vr L

o r roe r o0 0oz oz

e NeedV,, Vgand Vv,
o Flow field: use continuity and Navier-Stokes eqs.
op 10 10 0

— - +-— +— =0
o Tror P pg e 5 (i)
Constant p
3 _op 00 _0p_
ot or 00 0z
L0
°~ 56

Axisymmetric flow
0

2
(2.25)
or )

(2.4)

()

(b)

Long tube, no end effects

9_y
(a)-(c) into (2.4) &
d
—(rv,)=0
4 ev,)
Integrate
v, =f(z)
f(z) is “constant” of integration. Use the no-slip B.C.
v(r,,2)=0
(e) and (f) give
f(@)=0
Substitute into (e)
v, =0

.. Streamlines are parallel

v ; Determine : Navier-Stokes eq. in ~direction

(©)

(@)

(©)

(®)




y Dz velv. Ov. Bvi)_
A v o0 e e

2 2
P _67p+’u|:12[r6vz)+L6 v, +6 vz]

oz ror or 2 00* 8t
Simplify (2.112)
Steady state: é = (h)
ot
No gravity: g, =8.=0 (U]
(b), (¢) and (g)-(i) into (2.11z)
d
_al_'_ﬂli i @3.11)
0z rdr\_ dr
..V, depends on ronly, rewrite (3.11)
op 1d( dv,
———=u——Ir =g(r [0
0z # rdr [ dr &)

Integrate
p=8r)z+C, (k)
Apply Navier-Stokes in 7~direction

2
p[v 6v,+v96v, Yo o, ov, ov

"o r 00 r z6z+6t]=

S PET LR PR L7 1. P
et ) i eer 2 00 P
(b), () and (i) into (2.11r) @11n)
_,
or
r=f() (m)
f(z)= “constant” of integration

o
Integrate

e Equate two solutions for p: (k) and (m):

p=8)z+C,=f(2)

an=c
C'= constant. Use (0) into (j)
op_ ,,11[,&] _c
Integrate o rdr\ dr
d
Pt i@rz +C,;
. . dr 2udz
integrate again
v, =iQr2 +CInr+GC,
4udz
Two B.C.on: v,
v (0)
ﬁ =0, v.(r,)=0

(q) and (r) give Cjand C,

(0)

®)

[C))

(r)




C, = , €= Ldlroz
4udz
1dp 2
v, =——(r"-r, 3.12
P4 dz( ?) e
For long tube at uniform temperature:
or _o’r _,
oz 97?
(b), (¢), (g), (h) and (s) into energy (2.24)
kli(rdl)+,u¢=0 ®

(b), (¢) and (g) into (2.25) 2
dv

D=|—=
[ dr J

Substitute velocity solution (3.11) into the above

Substitute into (q)

)

2
D= [L p ] r?
(u) in (t) and rearrange 2pdz

)l
Integrate dr\ dr dkuldz
2
r=-_L [4p reCyinr+C,
64kpu\ dz
Need two B.C.

O _g gna 1r,)=T,
dr

(v) and (w) give 2
=0, C4=7:;+L 4p r;

64ku\ dz
Substitute into (v)

4 2 4
=1+ [42) {1
64ku\ dz o

(w)

(3.13)

(\J]

)

(3.14a)

In dimensionless form:

L[lfJ
n (ap) U #
64kpul\ dz
[b] Use Fourier’s dT
') =k )
(3.14) into above
r2 dp 2
) r = o
q'(r,) 1 6”[ dz]

[c] Nusselt number: WD 2
Nu="2_"%

Kk
k. dT(y)
BRI AN

(1.10) gives A

(3.14a) into (y)

(3.14b)

(3.15)

®)

(\)




h=— @
(2) into (x) "
Nu=4 (3.16)
(iii) Checking
Dimensional check:

e Each term in (3.12) has units of velocity
e Each term in (3.14a) has units of temperature
e Each term in (3.15) has units of W/m?

Differential equation check: Velocity solution (3.12)
satisfies (p) and temperature solution (3.14) satisfies (3.13)

Boundary conditions check: Velocity solution (3.12) satisfies
B.C. (r) and temperature solution (3.14) satisfies B.C. (w)

Limiting check:

(i) Uniform pressure (dp/dz = 0): No fluid motion.
Set dp/dz =0 in (3.12) gives v . =0

(ii) Uniform pressure ( dp/dz = 0): No fluid metion, no
dissipation, no surface flux. Set dp/dz =0 in (3.15) gives
q"(r,)=0

(iii) Global conservation of energy:

‘ Heat leaving tube = Pump work ‘

Pump work Wfor a tube of length L

W=(p-p,)Q @
P1 = upstream pressure
P> = downstream pressure
@ = flow rate

0= Zﬂ_[(:"vzrdr

(3.12) into the above, integrate

__7dp
8ud; ’
(z-1) and (z-2)
_del(p —-p2)
8u dz 1~ P2
Work per unit area "
wr=
2zv,L
(z-3) into the above 3
wr=_to dp(Pr—P2)
164 dz L
However (P1—p2) _ _dl
L dzg

Combine with (z-4 3 2
(z-4) — [@]
16u\dz

(z-2)

(z-3)

(z-4)

10



This agrees with (3.15)

(5) Comments
o Key simplification: long tube with end effects. This is
same as assuming parallel streamlines

e According to (3.14), maximum temperature is at center r
=0

e The Nusselt number is constant independent of Reynolds
and Prandtl numbers

Example 3.3: Lubrication Oil Temperature in Rotating
Shaft

Lubrication oil fills the clearance between a shaft
and its housing. The radius of the shaft is r; and
its angular velocity is w. The housing radius is
1o and its temperature isT, Assuming laminar
flow and taking into consideration dissipation,
determine the maximum temperature rise in the
oil and the heat generated due to dissipation?

3.3.3 Rotating Flow

Example 3.3: Lubrication Oil Temperature
in Rotating Shaft

7

e Lubrication oil between shaft
and housing

e Angular velocity is @

e Assuming laminar flow

e Account for dissipation

e Determine the maximum temperature
rise in oil

(1) Observations
o Fluid motion is due to shaft rotation

* Housing is stationary

11



e No axial variation in velocity and temperature

e No variation with angular position

e Constant P

Frictional heat is removed at housing
e No heat is conducted through shaft

e Maximum temperature at shaft

e Cylindrical geometry
(2) Problem Definition.
Determine the velocity and temperature distribution of oil

(3) Solution Plan
e Apply continuity and Navier-Stokes eqs. to determine flow
field

e Use energy equation to determine temperature field

e Fourier’s law at the housing gives frictional heat

(4) Plan Execution
(i) Assumptions
e Steady state
e Laminar flow
e Axisymmetric flow
e Constant properties
e No end effects
e Uniform surface temperature
e Negligible gravitational effect
(ii) Analysis
o Energy equation governs temperature

" (‘LTH Or  vedT | fLT)_
L PR PRV Al »

ror\"or) 12007 02

2 2
k[lﬁ( a—T)+i5 LN T:|+,u¢ @24)

where 2 2 PR
di=2(av’] +2(lav—a+v—’j +2| | +

or rog r 0z
dvg ve 1ov,\ (1dv, dvg) (v, av.Y
20_70_ "%r bt A} Ly —=| @25
[6r r+r60j +(r00+6z) +[6z+6r]( k

Need flow field v, ,vgyand v,
e Apply continuity and Navier-Stokes to determine flow

field
op, 10 10 0
e +—— +— =0 .
ot rar Pt agleve)+ o (ove) @4
Constant p

9 _op _0p_0_,
ot or 96 o
)

(a)
Axisymmetric flow

o6

—=0 (b)

12



Long shaft: 5

v,=—=0
. © 0z
(a)-(c) into (2.4)
d
—(rv,)=0
2
Integrate
rv,=C
Apply B.C. to determine C
v, (r,)=0
(e) and (f) give C =0
Use (e)
v,=0

r

.". Streamlines are concentric circles

Apply the Navier-Stokes to determine Vg

(©)

(@)

(e)

(€3]

v, 2o re%e _vive , o o)
or r 00 r 0z ot

19p, |8(10 18%g 28y, 0vg
=+l | = +— +5—L+
PP, ”|:6r(r6r(rv9)J 200 106 o
2.11
For steady state: P @1
Z = (h)
ot
Neglect gravity, use (b),(c), (g), (h) into (2.119)
d(1d
—| ——(rv =0 3.17)
dr [r dr( 0))
Integrate
C; G )
Vg =7r+— @
B.C. are r
ve(r)=wr; vg(r,)=0 ®

(j) gives C;and C,

Ch=— Z(ariz C, = a)rizr,,2
1 2_ 2 272 2
Ty =1 ry —F

(k) into (i) )
v(r) _ (5 /1) (/1) =(r/1;)
or; /1) -1
Simplify energy equation (2.24) and dissipation function
(2.25). Use(b), (¢), (g), (h)

and oo WJ_QZ
dr r

(3.18) into above

k)

(3.18)

(V)

13



2 2
o=| 2o | L
1-(r/r)* |

Combine (m) and (1)

1(,dlj__£ 20 ] 1
dr\ dr kl1-@r/r) | r

Integrate(3.19) twice
2
201} 1
1 =-£| i | Zicimr+c,
4k|1- (r;lry) r
Need two B.C. T
T(r,)=T, and ﬂ =0
dr

(n) and (o) give C5 and Cy

2 2
c =K | 2o |1
2k (1-@; /1) | 7P

(m)

(3.19)

(n)

2
201} 1 2
Cy=1,+2 | "2 1| =4 S,
4k | 1-(r; I 7,) ryo T

Substitute into (0)

2
T(r)=T, + £ |:20J7r,:| [(ri /r”)2 —(r; Ir?+ 2In(r, /r)]

4k | 1-(r; I1y)? G.202)
o T(r)-T,
¢ = (1 /1,)" = (r; /1) +2In(r, /1)
200
s 2O 3.20b)
4k | 1-(r; /r,)

Maximum temperature at ¥ =7;

T4;)-T, =+ L'z
Ak (1= /15)
Use Fourier’s law to determine frictional energy per
unit length q'(r,) "

:| [1+(ri /r,,)2 +2In(r, /r;)
@3.21)

(1) =2,k L)
(3.20a) in above dr
. (r)
q'(r,)=4zu =) (3.22)

(iii) Checking
e Each term in solutions (3.18) and (3.20b) is dimensionless
o Equation (p) has the correct units of W/m
Differential equation check:

o Velocity solution (3.18) satisfies (3.17) and temperature

solution (3.20) satisfies (3.19)
Boundary conditions check:

o Velocity solution (3.18) satisfies B.C. (j) and temperature
solution (3.20) satisfies B.C. (0)

14



Limiting check:

e Stationary shaft: No fluid motion. Set @ = 0in (3.18) gives
ve=0

o Stationary shaft: No dissipation, no heat loss Set @ = 0in
(3.22) gives ¢'(r,) =0

e Global conservation of energy:

‘Heat leaving housing =shaft work

Shaft work per unit length

W' = =2zr;z(r;)or; ®
7(r;) = shearing stress
dvy v
()= ﬂ[J - J] @
. dar r |,
(3.18) into the above 5 i
/r: ’
o(r;) = —2 o 1) 1T ©

(r, /1)? -1

Combining (p) and (r)
(@)
1-(r; /v,)?
This is identical to surface heat transfer (3.22)
(5) Comments
o The key simplifying assumption is axisymmetry

W'=4r, (s)

e Temperature rise due to frictional heat increase as
the clearance s decreased

o Single governing parameter: (7;/7,)

Example 3.4: A hollow shaft of outer radius, r, rotates

with constant angular velocity, w , while

immersed in an infinite fluid at uniform

temperature T,,, Taking into

consideration dissipation, determine

- surface heat flux. Assume incompressible
laminar flow and neglect end effects.

Given
o Fluid motion is due to shaft rotation

e Axial variation in velocity and temperature
are negligible for a very long shaft.

*  Velocity, pressure and temperature do not
vary with angular position.

15



® The fluid is incompressible (constant density)

e The determination of surface temperature and
heat flux requires the determination of
temperature distribution in the rotating fluid.

e Use cylindrical coordinates
(2) Problem Definition(Find).

Determine velocity & temperature distribution in rotating flui

(3) Solution Plan(Equation)
e Apply continuity and Navier-Stokes eqs. to determine flow
field

e Use energy equation to determine temperature field

(4) Plan Execution

e Steady state

e Laminar flow

e Axisymmetric flow
e Constant properties(density, viscosity and conductivity),
e No end effects

no angular and axial variation of velocity, pressure and
temperature

e Negligible gravitational effect

(i) Assumptions

glﬁAnalysm
e Temperature distribution is obtained by solving the energy

equation. Thus we begin the analysis with the energy equation.

+v

(ot or veor  oT)_
P o e a0 )

or) 1re0* &z

ror

2 2
k[lé(ral)+ LI z:|+,u¢ @24)

where o 2 5 2 PR
di=2( v’] +2(1ﬂ+v—’j +2| | +
or rod r 0z

[%_vi+10vrjz+(1%+%

o r roe rod oz

Need flow field v, ,vgyand v,

’ + ov,
14

oy ’ (2.25)
or -

e Apply continuity and Navier-Stokes to determine flow

field
op, 10 10
- +—
o i P g (re)
Constant p

ot or 96 o

2
6

Axisymmetric flow

o (pv)

9 o0 _% _%_,

(2.4)

(a)

(b)

16



Long shaft: 5

v,=—=0
. © 0z
(a)-(c) into (2.4)
d
—(rv,)=0
2
Integrate
rv,=C
Apply B.C. (No-slip) to determine C
v,.(r,)=0
(e) and (f) give C =0
Use (e)
v,=0

.". Streamlines are concentric circles

Apply the Navier-Stokes to determine Vg

(©)

(@)

(e)

(€3]

"or r 00 r Yo o

2 2
%o—lal+#|:£(li(rvo)J+ia Yo 20, 9 v0i|

p(v 6v9+v96v9 VeV, 6\JJ+6\JJ)=

ro0 | or\ror 2 00> 1208 o2
2.11
For steady state: P @1
Z = (h)
ot
Neglect gravity, use (b),(c), (g), (h) into (2.119)
d(1d
—| ——(rv =0 3.17)
dr [r dr ( 0))
Integrate
C; G )
vg = Tr +—= @
B.C. are r
VE’(ro):wro VB(OO) =0 ®

(j) gives C;and C,

(3.18)

(k) into (i) o
Vvy(r) *row[ , j

Simplify energy equation (2.24) and dissipation function
(2.25). Use(b), (¢), (g), (h)

1d( dT
——|r—|+pu®@=0 )
rdr[rdrj # o
and oo WJ_QZ
dr r

(3.18) into above

17



=40 &
-
Combi d(
ombine (m) and (1) d( dTY 4 o
dr\_ dr ko 3.19)

Integrate(3.19) twice

)

) 1
T(r):—;a)zﬁr—_JrC31nr+C4 ™

Need two B.C.
T(0)=T, and r—oo Tislimited ©

(n) and (o) give C5 and Cy

C3:O C4:Too

Substitute into (0) 4
r
T(r)=T,-L&*’s  cam

k r

Surface temperature at ;- —;-
o

@3.21)

I(r)=T, —%a)zrf

Use Fourier’s law to determine frictional energy per
unit length q@,)

dr(r,)

q'(ra) = _Z”rok dr

(3.20a) in above

q'(,) =4z u(or,)’ 62
(iii) Checking
e Each term in solutions (3.18) and (3.20b) is dimensionless

e Equation (p) has the correct units of W/m
Differential equation check:

o Velocity solution (3.18) satisfies (3.17) and temperature
solution (3.20) satisfies (3.19)

Boundary conditions check:

o Velocity solution (3.18) satisfies B.C. (j) and temperature
solution (3.20) satisfies B.C. (0)
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Limiting check:
e Stationary shaft: No fluid motion. Set @ = 0in (3.18) gives
ve=0
o Stationary shaft: No dissipation, no heat loss Set @ = 0in
(3.22) gives ¢'(r,) =0
¢ Global conservation of energy: gyface heat transfer rate must
equal to work required to overco:

friction at the shaft’s surface
Shaft work per unit length

’
W'==22rrz(r,)or, ®
7(7,) = shearing stress
()= Yo Va
! dr v lp=p (@

(3.18) into the above

;) =2ue !

Combining (p) and (r)
W'=—4ru(or,) ®

This is identical to surface heat transfer (3.22)

(5) Comments

o The key simplifying assumption is axisymmetry.
This resulted in concentric streamlines with
vanishing normal velocity and angular changes.

* Surface temperature is lowest in the entire region.
* Heat flow direct ion is negative.

* This problem was solved by specifying two
conditions at infinity. If surface temperature is
specified instead of fluid temperature at infinity,
the solution determines T at infinity.

19



