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CHAPTER 4

BOUNDARY LAYER FLOW

APPLICATION TO EXTERNAL FLOW

4.1 Introduction
 Boundary layer concept (Prandtl 1904): Eliminate 

selected terms in the governing equations 

 Two key questions

whichunder  conditions the areWhat 
 can quationsgoverninge the in terms

dropped? be

(1)

?dropped be can terms What (2)
1

 Answer: By two approaches

 Intuitive arguments

 Scale analysis

4.2  The Boundary Layer  Concept:  
Simplification of Governing Equations

4.2.1 Qualitative Description

2

viscosity of action the conditions certainUnder 
surface thenear  region thin a to confined is

layer boundary velocityor  viscous the called

 Conditions for viscous boundary layer:

separation flowwithout  bodySlender  (1)
 100)(number  Reynolds High (2) Re

 Conditions for thermal boundary layer:

3

Under certain conditions thermal interaction between
moving fluid and a surface is confined to a thin region

near the surface called the thermal or temperature 
boundary layer
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100)( RePr
numbers Prandtl and Reynolds ofproduct  High )2(

separation flowwithout  bodySlender  (1)

k

LVc

k

cLV
Pe pp  





 RePrNumberPeclet (4.1)

(1) Fluid velocity at surface vanishes 

(2) Rapid changes across BL to V

(3) Rapid changes temperature across BL from Ts to T

(2)  Boundary layers are thin:

For air at 10 m/s parallel to 1.0 m long plate,   = 6 mm 
at end

(3) Viscosity plays negligible role outside the  viscous BL

(4) Boundary layers exist in both forced and free convection 
flows
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4.2.2 The Governing Equations

Simplified case:

Assumptions: 

(1) steady state

(2) two-dimensional

(3) laminar

(4) constant properties

(5) no dissipation 

(6) no gravity

Continuity: 

0
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u v

(2.2)
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x-direction:  

y-direction:
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Energy:
































 2

2

2

2

y

T

x

T
k

y

T

x

T
uc v (2.19)

6



3

4.2.3 Mathematical Simplification

4.2.4 Simplification of the Momentum Equations

(i) Intuitive Arguments

Two viscous terms in  (2.10x):
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is one smaller than the other?
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Insect dilemma: Too windy at position 0, where to go?
Move to position 4!
Conclusion:

more are  torespect  with  in Changes yu
x torespect  with changes than pronounced

Pressure terms in (2.10x) and (2.10y):
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x

u


 Neglect           in  (2.10x)

 Slender body

 Streamlines are nearly parallel

 Small vertical velocity

2

2

2

2

y

u

x

u








(4.2)
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p depends on x only, i.e. p  p(x) 

(4.2) and (4.4) into (2.10x) gives: 

 Continuity equation (2.2) and the x-momentum boundary 
layer equation (4.5) contain three unknowns: u, v, and p

0
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(4.3)
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Boundary layer x-momentum equation
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 is pressure at edge of BL (y = ), obtained from 
solution of inviscid flow outside BL

p

(ii) Scale Analysis

 Use scaling to arrive at BL approximations. 

 Assign a scale to each term in an equation

Free stream velocity 
Length L
BL thickness  

Slender body

V



Postulate: 

1
L


(4.6)
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If (4.6) is valid, we pose three questions:

(1) What terms in the governing equations can be  
dropped?

(2) Is normal pressure gradient negligible compared to 
axial pressure gradient?

(3) Under what conditions is (4.6) valid?
Assign scales:

u V (4.7a)

y (4.7b)

Lx  (4.7c)

Apply (4.7) to continuity (2.2) 

x
u

y 




v
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Using (4.7)


v

L
V

vSolving for

VvConclusion:   

Order of magnitude of inertia and viscous terms 
x-momentum equation (2.10x)

 First inertia term:

v
L

V


 (4.7d)
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 Second inertial term:
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Use (4.7d) 

Conclusion: 2 inertia terms are of the same order  

Examine 2 viscous terms in (2.10x)
 First viscous term:

 Second viscous term:

Conclusion:

L
V

V
y
u 





v (b)
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 22 / xu Neglect                   in (2.10x)
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Examine 2 viscous terms in (2.10y)
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<< (4.8)

Simplify (2.10x) and (2.10y) Using (4.2) and (4.8)
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This answers first question

 Second question: pressure gradient

x
p




y
p


Scale       and  
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Balance axial pressure with inertia in (4.9x) 

Scale using (4.7) 

L
V

x
p 2



 

Balance pressure with inertial in (4.9y) 

Compare (e) and (f) using (4.6) 
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(4.10)
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Since 
),( yxpp 
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y
p

dx
x
p

dp








or

dx
dy

Scale

(e)-(g) into (4.11)

Invoke(4.6)
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Ldx
dy  (g)
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 (h)

x
p

dx
dp


 (i)
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Conclusion

only.  on depends pressurelayer  Boundary x

negligible is  with Variation y

 )(xpPressure p(x) inside BL = pressure               at edge 



(4.12) into (4.9x)

(4.13) is x-momentum eq. for BL flow. Result is based on key 
assumption that .1/ L

)(),( xpyxp  (j)

dx
dp

x
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(4.12)
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 Third question: condition for validity of (4.6)

Balance inertia with viscous force in (4.13) 

Inertia:

Viscous:

Equate

L
V 2


2

 V

Rearrange

1
L


(4.6)
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(4.14a)
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or

where

1 when  1  LRe
L


Generalized (4.14)

LL Re

1



(4.14b)


LV

L
Re (4.15)

xx Re
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(4.16)
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4.2.5 Simplification of the Energy Equation
Simplify (2.19)

(i) Intuitive Arguments

Two conduction terms in  (2.19): 
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is one smaller than the other? 
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Insect dilemma: Too hot at position 0, where to go?
Move to position 2!
Conclusion:

x torespect  with than pronounced 
more are  torespect  with  in Changes yT
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(4.17)
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 Neglect          in  (2.19):

(4.18) is the boundary layer energy equation.
(ii) Scale Analysis

 Use scaling to arrive at BL approximations 

 Assign a scale to each term in an equation

Slender body 

VFree stream velocity 

TFree stream temperature 

Length L
BL thickness  t
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 v (4.18)
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Postulate: 

1
L
t (4.19)

If (4.19) is valid, we pose two questions:

(1) What terms in (2.19) can be  dropped?

(2) Under what conditions is (4.19) valid?

 Answer first question

Assign scales:

t
.

Scales for u and v depend on whether      is larger or smaller 
than 

ty  (4.20)

 TTT s (4.21)

Lx  (4.7b)

23

Two cases, Fig. 4.4:

Case (1):  t

Scaling of continuity:

Scales for convection terms in (2.19): 

u V (4.22)

v
L

V t
 (4.23)

24
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Use (4.7b) and (4.20-4.23)

and

Conclusion: the two terms are of the same order 

Scale for conduction terms:

and

1
L
t

Compare (c) with (d), use : 

L
T

V
x
T

u
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v (b)
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(d)
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Energy equation simplifies to

Second question: Under what conditions is (4.19) valid?

Balance between convection and conduction: 
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Scaling 
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or

or
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or

Conclusion:

Define Peclet number Pe

1.0
 
L
t

Example: For Pe = 100,

LPrReL
t 1




(4.24)

1LPrRe1
 
L
t when (4.25)

LPrRePe (4.26)
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 t  When is              ?

 Take ratio of (4.24) to (4.14b)

  tCriterion for : 

Case (2):  t
Fig. 4.4

V
u 

t

Pr
t 1 





(4.27)

 t 1Prwhen (4.28)
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 u within the thermal boundary layer is smaller than free 
stream velocity

 Similarity of triangles 

Scaling of continuity

Use (4.29), (4.30) and follow procedure of case (1): 
conclusion: 

(1) The two terms are of the same order

(2) Axial conduction is negligible compared to normal 
conduction 

Second question: Under what conditions is (4.19) valid?

u

 tV (4.29)

v
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 (4.30)
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Balance between convection and conduction: 
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Use (4.29) for u,  scale each term 
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Substitute into (f)
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(4.14b)
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Conclusion:

 t   When is             ?
 Take ratio of (4.31) to (4.14b)

  t  Criterion for :

L

t

RePrL 1/3

1 



(4.31)
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L
t

11/3 LRePrwhen (4.32)

1/3

1  

Pr
t 




(4.33)

 t 11/3 Prwhen (4.34)
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4.3 Summary of Boundary Layer Equations   
for Steady Laminar Flow

Assumptions:

(1) Newtonian fluid

(2) two-dimensional

(3) negligible changes in kinetic and potential  energy 

(4) constant properties 

 Assumptions leading to boundary layer model

(5) slender surface

(6) high Reynolds number (Re > 100) 

(7) high Peclet number (Pe > 100) 

32

 Introduce additional simplifications:
(8) steady state

(9) laminar flow

(10) no dissipation (F = 0)

(11) no gravity and 

q (12) no energy generation (       = 0 )

Governing boundary layer equations:

Continuity:

x-Momentum:

2
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dx

dp
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u
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u
u










  


v (4.13)
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Energy:

2
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T
y
T

x
T

u









 v (4.18)

Note the following: 

(1) Continuity is not simplified for boundary layer flow 

(2) Pressure in (4.13) is obtained from inviscid solution 
outside BL. Thus (2.2) and (4.13) have two 
unknowns: u and v

)( TTg(3) To include buoyancy, add                         to right (4.13)

(4) Recall all assumptions leading the 3 equations

34

4.4 Solutions: External Flow 

 Streamlined body in an infinite flow

 Examine thermal interaction 

 Need temperature distribution T

 Temperature depends on velocity distribution 

 For constant properties, velocity distribution is 
independent of temperature

4.4.1 Laminar Boundary Layer Flow over 
Semi-infinite Flat Plate: Uniform Surface 
Temperature

35

sT Plate is at temperature

T Upstream temperature is
 Upstream velocity uniform and parallel 

 For assumptions listed in Section 4.3 the continuity, 
momentum and energy are given in (2.2), (4.13) and (4.18)

 Transition from laminar to turbulent at:

000,500/   tt xVRe
36
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(i) Velocity Distribution
Find: 
 Velocity distribution

)(x Boundary layer thickness

)(xo Wall shearing stress

(a) Governing equations and boundary conditions:
Continuity and x-momentum:

0
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u v

(2.2)

2

21

y

u

dx

dp

y

u

x

u
u










  


v (4.13)

The velocity boundary conditions are:

0)0,( xu (4.35a)

0)0,( xv (4.35b)
37

(b) Scale analysis: Find         and  )(x )(xo

 Vxu ),( (4.35c)

Vyu ),0( (4.35d)

Result of Section 4.2.4: 

xx Re

1



(4.16)

oWall stress     :

















y
u

xyxxy
v (2.7a)

0y 0)0,( xvAt wall           , 

y
xu

o 



)0,( (4.36)

uScales for and y :
38

u V (4.7a)

Lx  (4.7c)

(4.36) is scaled using (4.7)


  V

o (a)

Use (4.16) for 

xo Re
x
V  (b)

fCFriction coefficient        :

oUse (b) for  

2)2/1( 


V

C o
f 

 (4.37a)

x
f Re

C
1

 (4.37b)
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(c) Blasius solution: similarity method

 Solve (2.2) and (4.13) for the u and v

p Equations contain 3 unknowns: u, v, and

 Pressure is obtained from the inviscid solution outside BL

Inviscid solution: 

 Uniform inviscid flow over slightly curved edge BL

 Neglect thickness
 Model: uniform flow over a flat plate of zero thickness

 Solution: 

Thus the pressure gradient is
V pu =      ,   v = 0,   p =       = constant (4.38)

0

dx

dp
(4.39)

40

(4.39) into (4.13)

 (4.40) is nonlinear

 Must be solved simultaneously with continuity (2.2) 

 Solution was obtained by Blasius in 1908 using

similarity transformation:

),( variable single a ito  and  Combine yxyx 

only ),( on depends that  Postulate yx
V
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u










 v (4.40)

x
V

yyx


),( (4.41)

41

f = f () to be determined

NOTE: 
/V (1) Including               in definition of      , is for convenience 

only

),( yx(1) in (4.41) is arrived at by formal procedure

Continuity (2.2) gives v: 

x
u

y 



v

Multiplying by  dy, integrate

d
df

V
u 


(4.42)

 


 dy
x

u
v (a)

42
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dy xu  /


Use (4.41) and (4.42) to express      and             in terms of 
the variable  

Chain rule: 

dx
d

d
du

x
u 







Use (4.41) and (4.42) into above

(b) and (c) into (a) 
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xVV 
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2

2

2 d

fd
x

V
x
u 




(c)

43

Integration by parts gives








 


f
d
df

xVV 


2
1v

(4.43)

)(f Need function          , use momentum equation

yu  / 22 / yu First determine             and 

(4.42), (4.43) and (c)-(e) into (4.40)

x

V

d

fd
V

dy

d

d
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(d)
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2

2

(e)

44

dtransforme are equations aldifferenti Partial
equation aldifferenti ordinary an into

NOTE: x and y are eliminated in (4.44)

 Transformation of boundary conditions

0)(2
2

2

3

3





 d

fd
f

d

fd
(4.44)

1
)(



d

df
(4.45a)

0)0( f (4.45b)

0
)0(


d

df
(4.45c)
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1
)(



d

df
(4.45d)

order. third is (4.44) Equations
?conditions boundary many How

 Difficulty: (4.44) is nonlinear
 Solution by power series (Blasius)
 Result: Table 4.1

46

0.0 0.0 0.0 0.33206
0.4 0.02656 0.13277 0.33147
0.8 0.10611 0.26471 0.32739
2.4 0.92230 o.72899 0.22809
2.8 1.23099 0.81152 0.18401
3.2 1.56911 0.87609 0.13913
3.6 1.92954 0.92333 0.09809
4.0 2.30576 0.95552 0.06424
4.4 2.69238 0.97587 0.03897
4.8 3.08534 0.98779 0.02187
5.0 3.28329 0.99155 0.01591
5.2 3.48189 0.99425 0.01134
5.4 3.68094 0.99616 0.00793

Table 4.1 Blasius solution [1]

5.6 3.88031 0.99748 0.00543

x

V
y

v
 f




V

u

d

df
2

2

d

fd

47

xx Re

1



(4.16)

)(x )(xo Find          wall stress

 Define  as the distance y from the plate where 
u/V = 0.994, Table 4.1 gives




V
x 2.5

or

Scaling result: 

o Wall stress     : use

xRex

2.5



(4.46)

y
xu

o 



)0,( (4.36)
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(d) into (4.36), use Table 4.1  

fCFriction coefficient       : (4.47) into (4.37a) 

Scaling result: 

x

V
V

d

fd

x

V
Vo 




 



  33206.0

)0(
2

2
(4.47)

xRe
C f

664.0
 (4.48)

x
f Re

C
1

 (4.37b)

49

(ii) Temperature Distribution

 Isothermal semi-infinite plate

t xNu Determine:      , h(x) and
 Need  temperature distribution

(a) Governing equation and boundary conditions

Assumption: Listed in Section 4.3 

50

Energy equation

2

2

y

T
y
T

x
T

u









 v (4.18)

The boundary condition are:

sTxT )0,( (4.49a)

 TxT ),( (4.49b)

TyT ),0( (4.49c)

(b)  Scale analysis: t xNu, h(x) and 

xL From Section 4.2.5:  Set            (4.24) and (4.31)

Case (1):  t ( Pr <<1)

x

t

PrRex
1 




(4.50)

51
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Case (2):  t (Pr >>1)

Heat transfer coefficient h(x)
xex

t

RPr
1/3

1
(4.51)







TT
y
xT

kh
s

)0,(

(1.10)

Use scales of (4.20) and (4.21) into above 

t

k
h

 
 (4.52)

tWhere     is given by (4.50) and (4.51).

52

Case (1):  t ( Pr <<1), (4.50) into (4.52)

xPrRe
k

x
h  ,     for  Pr <<1 (4.53)

xNuLocal Nusselt number

k

hx
Nux  (4.54)

(4.53) into (4.54)

xx ePrRNu  ,     for  Pr <<1 (4.55)

Case (2):  t ( Pr >>1). Substituting (4.51) into (4.52)

xeRPr
k

h
1/3

x
 ,    for  Pr >>1         (4.56)

Nusselt number:

xx eRPrNu
1/3

 ,    for  Pr >>1       (4.57)
53

(c) Pohlhausen’s solution:  t xNuT(x,y),       , h(x), 

 Energy equation (4.18) is solved analytically 

 Solution by Pohlhausen (1921) using similarity 
transformation 

 Defined

(4.58) into (4.18)

B.C.

s

s

TT
TT





 (4.58)

2

2

yyx
u










 

v (4.59)

0)0,( x (4.60a)

1)0,( x (4.60b)

1)0,( x (4.60c)
54
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 Solve (4.59) and (4.60) using similarity
 Introduce transformation variable 

x
V

yyx


),( (4.41)

Assume 

)(),(  yx

 Blasius solution gives u and v

d
df

V
u 


(4.42)








 


f
d
df

xVV 


2
1v

(4.43)

(4.41)-(4.43) into (4.59) and noting that 
55
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2

2
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V
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(4.59) becomes

Result: 

0)(
22

2








d
d

f
Pr

d

d
(4.61)

 dtransforme is equation aldifferenti Partial
equation aldifferenti ordinary an into

56

NOTE:  
(1) One parameter: Prandtl number Pr

(2) (4.61) is linear, 2nd order ordinary D.E. 

(3)            in (4.61) represents the effect motion)(f
Transformation of B.C.: 

1)(  (4.62a)

0)0(  (4.62b)

1)(  (4.62c)

Solution: Separate variables, integrate twice, use B.C. 
(4.62) (Details in Appendix) 




























0 2
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Pr

(4.63)
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Surface temperature gradient:

 






















d
d

fdd

d
Pr

Pr

2

2

332.0)0(
(4.64)

 Integrals are evaluated numerically

2

2

d
fd

 is obtained from Blasius solution

 Results are  presented graphically in Fig. 4.6

58
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Pohlhausen's solutionFig. 4.6

 Determine: t xNu, h(x) and

t t TT Fig. 4.6 gives      . At y =      ,              ,  or
59

)(xt Fig. 4.6 shows that           depends on Pr
 Local heat transfer coefficient h(x): use (1.10)

1




 s

s

TT
TT ty ,   at (4.65)







TT
y
xT

kh
s

)0,(

(1.10)

where

yd
d

d
dT

y
xT







 





)0()0,(

Use (4.41) and (4.58) into above




 d
d

x
V

TT
y
xT

s
)0(

)(
)0,( 
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Substitute into (1.10) 




 d
d

x
V

kxh
)0(

)(  (4.66)

 Average heat transfer coefficient:


L

dxxh
L

h
0

)(
1

(2.50)

Use (4.66) and integrate



d

d
Re

L
k

h L
)0(

2 (4.67)

 Local Nusselt number: (4.66) into (4.54)

xx Re
d

d
Nu


 )0( (4.68)

61

 Average Nusselt number:

LL Re
d

d
Nu


 )0(

2 (4.69)

Tq Total heat transfer rate     :
Plate length L and width W.  Apply Newton’s law

hWLTTdxxhWTT

dxWTTxhq

s

L

s

L

sT

)()()(

))((

0

0












or
hATTq

ssT )(  (4.70)

numberNusselt  andt coefficientransfer Heat 

 
(0)

gradient  etemperatur surface on depend



d

d
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d

d )0( depends on Pr

 It is determined from (4.64)

 Values in Table 4.2

 Approximate values of



d

d )0( are given by:

3.3871000

1.572100

1.24750

0.83515.0

0.73010.0

0.6457.0

0.3321.0

0.2920.7

0.2590.5

0.1400.1

0.05160.01

0.01730.001

Pr

Table 4.2



d

d )0(
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3/1339.0
)0(

Pr
d

d 



,     Pr >10 (4.71c)

3/1332.0
)0(

Pr
d

d 



,     0.6 < Pr < 10    (4.71b)

2/1564.0
)0(

Pr
d

d





,     Pr < 0.05         (4.71a)

 Compare with scaling:

 Two cases: Pr << 1 and Pr >> 1
Combine (4.71a) and (4.71c) with (4.68) 

0.05for,564.0 2/1  PrRePrNu xx (4.72a)

10for,339.0 3/1  PrRePrNu xx (4.72c)
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Scaling results: 

xx ePrRNu  ,     for  Pr <<1 (4.55)

xx eRPrNu
1/3

 ,    for  Pr >>1       (4.57)

 Fluid properties: fTEvaluated at the film temperature

2
 TT

T s
f (4.73)

65

4.4.2 Applications:  Blasius Solution, 
Pohlhausen’s Solutions and Scaling

 Three examples

Example 4.1:  Insect in Search of Advice

 Air at 30oC,

V = 4 m/s 

 Insect at 0 

 Determine velocity u at locations 0, 1, 2, 3, 4.

 Is insect inside BL? 

(1) Observations.

 External forced convection boundary layer problem

66
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 Changes in velocity between 1 and 3 should be small 
compared to those between 2 and 4

 Location 4 should have the lowest velocity  

 If the flow is laminar Blasius applies

 The flow is laminar if Reynolds number is less than 500,000

(2) Problem Definition.  Determine u at the five locations

(3) Solution Plan.


 If  laminar, use Blasius solution, Table 4.1,  to determine 

u and 

 Check the Reynolds number for BL approximations and 
if the flow is laminar

(4) Plan Execution 

67

(i) Assumptions. All assumptions leading to Blasius 
solution: These are:

 Newtonian fluid

 steady state

 constant properties

 two-dimensional

 laminar flow (Rex < 5105)

 viscous boundary layer flow (Rex > 100)

 (7) uniform upstream velocity

 flat plate

 negligible changes in kinetic and potential energy 

 no buoyancy ( = 0 or g = 0)
68

(ii) Analysis

V = upstream velocity = 4 m/s 
610 =  kinematic viscosity = 16.01            m2 /s

Transition Reynolds number:

tx
Re Laminar flow if  Rex <

 Viscous BL approximations are valid for


xV

Rex
 (a)

At x = 151 mm: 




  )/sm(1001.16

)m(151.0)(4
26

m/s
xRe 37,726

tx
Re = 5105 (b)

100xRe (c)

69



24

BL flow is laminar. Use Blasius solution 
Determine

x
V


 = y (d)

xRex

2.5



(4.46)

(iii) Computations.
 Calculate  at each location, use Table 4.1 to find u/V. 

Results:

location x (m) y (m)  u/V u(m/s)
0 0.150 0.002 2.581 0.766 3.064

1 0.151 0.002 2.573 0.765 3.06

2 0.150 0.003 3.872 0.945 3.78

3 0.149 0.002 2.59 0.768 3.072

4 0.150 0.001 1.291 0.422 1.688
70

 Use (4.46) to determine    at                  m and 151.0x 726,37xRe

mm 4m004.0)m(151.0
726,37
2.5

 x
Re
5.2

x



Thus the insect is within the boundary layer

(iv) Checking. Dimensional check:  

Equations (a) and (d) are dimensionally correct

Qualitative check:  u at the five locations follow expected 
behavior

(5) Comments.

 The insect should move to location 4 

 Changes in u with respect to x are minor

 Changes in u with respect to y are significant  
71

 What is important for the insect is the magnitude of the 
velocity vector V = (u2 + v2)1/2 and not u. However, 
since v << u in boundary layer flow, using u as a 
measure of total velocity is reasonable

Example 7.2: Laminar Convection over a Flat 
Plate

 Water

V = 0.25 m/s

T = 35°C

sT = 85°C

 L = 75 cm

72
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)(xt[a] Find equation for 

[b] Determine h at x = 7.5 cm and 75 cm

Tq[c] Determine      for a plate 50 cm wide

q [d] Can Pohlhausen's solution be used to      at the trailing 
end of the plate if its length is doubled?

(1) Observations
 External forced convection over a flat plate

)(xt x increases with
q  Tq Newton’s law of cooling gives     and

)(xh x decreases with

 Pohlhausen's solution is applies laminar flow and all 
other assumptions made

 Doubling the length doubles the Reynolds number 
73

(2) Problem Definition. Determine temperature distribution
(3) Solution Plan
 Compute the Reynolds and Peclet numbers to establish if 

this is a laminar boundary layer problem

t q  Tq Use Pohlhausen's solution to determine      , h(x),     and

(4) Plan Execution

(i) Assumptions. All assumptions leading to Blasius 
solution: These are:

 Newtonian fluid

 two-dimensional

 negligible changes in kinetic and potential energy

 constant properties

 boundary layer flow
74

 steady state

 laminar flow

 no dissipation

 no gravity

 no energy generation

 flat plate

 negligible plate thickness

 uniform upstream velocity V

 uniform upstream temperature T
 uniform surface temperature Ts

 no radiation 

75
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(ii) Analysis and Computations 
 Are BL approximations valid? Calculate the Reynolds and 

Peclet. Condition:

xRexRe > 100   and  Pe = Pr > 100 (a)


xV

Rex


t
ReTransition Reynolds number:

5105xRe (b)

fTProperties at  

2/)(  TTT sf
(c)

sT = 85oC

T = 35oC

fT = (85+ 35)(oC)/2 = 60oC  
76

k = 0.6507 W/m-oC
Pr = 3.0
 = 0.4748  106 m2/s.

xReat  x = 7.5 cm         and Pe are

4
26

10949.3
)s/m(104748.0

)m(075.0)m/s(25.0



 




xV

Rex

PrRePe x 44 1085.11310949.3 

BL approximations are valid, flow is laminar     
Pohlhausen's solution is applicable.

t[a] Determine     : ty  TTAt            ,

 
  1)( 








s

s
t TT

TT
77

t 1)( tFrom Fig. 4.6: Value of     at                  and  Pr = 3 at is 
approximately 2.9

 /9.2 xVtt  

or

x

t

RexVx
9.29.2


 


(d)

[b] Heat transfer coefficient:




 d
d

x
V

kxh
)0(

)(  (4.66)



d

d )0(
:

3/1332.0
)0(

Pr
d

d 



,     0.6 < Pr < 10    (4.71b)
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Pr = 3

4788.0332.0
)0( 3/1  (3)



d

d

Substituting into (4.66) for x = 0.075 m

Cm

W
5.825

o2 
h

At x = 0.75 m

Cm

W
261

o2 
h

[c] Heat transfer rate:

hATTq
ssT )(  (4.70)

L = length of plate = 75 cm =0.75 m

W = width of plate = 50 cm = 0.5 m
79



d

d
Re

L
k

h L
)0(

2 (4.67)

510949.3 LRe .    Substitute into the above

Cm

W
1.522

o2 
h

Substitute into (4.70)

W9789Tq

[d] Doubling the length of plate:

LRe2 = 2 (3.949  105) = 7.898  105

tL ReRe  2

Flow is turbulent, Pohlhausen's solution is not applicable
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(iii) Checking. Dimensional check:

h
Reynolds number is dimensionless and that units of h
and are    correct
Qualitative check: As x is increased h decreases 
Quantitative check: Computed values of h are within 
the range of Table 1.1 

(5) Comments

 Check Reynolds number before applying Pohlhausen's 
solution

 Velocity boundary layer thickness     is given by

xRex
2.5




(4.46)

Compare (d) with equation (4.46): 

 t
81



28

Example 7.3: Scaling Estimate of Heat Transfer 
Rate 

Use scaling to determine the total heat transfer rate for 
conditions described in Example 7.2

(1) Observation
Newton’s law gives heat transfer rate

 The heat transfer coefficient can be estimated using scaling

(2) Problem Definition.

Determine the heat transfer coefficient h

(3) Solution Plan.

Apply Newton’s law of cooling and use scaling to determine h

(4) Plan Execution

82

(i) Assumptions 
 Newtonian fluid

 two-dimensional 

 negligible changes in kinetic and potential energy

 constant properties

 boundary layer flow

 steady state

 no dissipation

 no gravity

 no energy generation

 no radiation 

(ii) Analysis. Application of Newton’s law of  cooling gives

hATTq
ssT )(  (4.70)
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A = surface area = LW, m2

h = average heat transfer coefficient, W/m2-oC

L = length of plate = 75 cm =0.75 m

Tq = total heat transfer rate from plate, W

sT = surface temperature = 85oC

T = free stream temperature = 35oC

W = width of plate = 50 cm = 0.5 m

h by (1.10)







TT
y
xT

kh
s

)0,(

(1.10)

k = thermal conductivity = 0.6507 W/m-oC
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Follow analysis of Section 4.41, scale of h for Pr >>1

xeRPr
k

h
1/3

x
 ,    for  Pr >>1         (4.56)


xV

eR x
 and Pr = 3

,hh Set             x = L,  A = WL and substitute (4.56) into (4.70)

LsT RePrkWTTq
1/3

)(  (a)

(iii) Computations
510949.3 LRe

Substitute into (a)

394900CW/m(6507.0)m(5.0))(3585(
1/3o 3)Co Tq

14740Tq W
85

9789TqUsing Pohlhausen’s solution gives                    W

Dimensional Check:Solution (a) is dimensionally correct
(iv) Checking.

(5) Comments.
Scaling gives an order of magnitude estimate of the heat 
transfer coefficient. In this example the error using  scaling 
rate is 50% 
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4.4.3 Laminar Boundary Layer Flow over  
Semi-infinite Flat Plate: 
Variable Surface Temperature 

 Consider uniform  flow over plate

 Surface  temperature varies with x as: 

n
s CxTxT  )( (4.72)
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 C and n, constants

T is free stream temperature

),( yxT )(xh xNu Tq Determine              ,          ,          and

 Assumptions: summarized in Section 4.3

(i) Velocity Distribution
 For constant properties velocity is independent of the 

temperature distribution 

 Blasius solution is applicable: 

d
df

V

u




(4.42)








 


f
d
df

xVV 


2
1v

(4.43)
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x
V

yyx


),( (4.41)

(ii) Governing Equations for Temperature Distribution

Based on assumptions OF Section 4.3: 

2

2

y

T
y
T

x
T

u









 v (4.18)

Boundary condition

n
s CxTTxT  )0,( (4.73a)

 TxT ),( (4.73b)

TyT ),0( (4.73c)
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(iii) Solution
 Solution to (4.18) is by similarity transformation

Define :

s

s

TT
TT





 (4.58)

Assume
)(),(  yx (4.75)

Use (4.41)-(4.43), (4.58), (4.72), (4.75), energy (4.18) 
transforms to (Appendix C)

0)(
2

)1(
2

2








d
d

f
Pr

d
df

Prn
d

d
(4.76)

B.C. (4.73): 
1)(  (4.76a)

0)0(  (4.76b)

1)(  (4.76c)
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 Note: Two B.C. coalesce into one
Heat transfer coefficient and Nusselt number: 
Use (1.10)







TT
y
xT

kh
s

)0,(

(1.10)

where

yd
d

d
dT

y
xT





 





)0()0,(

Use (4.41),(4.58) and (4.72) into the above




 d
d

x
V

Cx
y
xT n )0()0,( 




Substitute into (1.10) 
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 d
d

x
V

kxh
)0(

)(  (4.78)

 Average heat transfer coefficient: Use (2.50)


L

dxxh
L

h
0

)(
1

(2.50)

Substitute (4.78) into (2.50) and integrate



d

d
Re

L
k

h L
)0(

2 (4.79)

 Local Nusselt number: (4.78) into (4.54)

xx Re
d

d
Nu


 )0( (4.80)

 Average Nusselt number:
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LL Re
d

d
Nu


 )0(

2 (4.81)

numberNusselt  andt coefficientransfer Heat 

 
(0)

gradient  etemperatur surface on depend



d

d

(ii) Results:

 Equation (4.76) subject to boundary conditions (4.77) is 
solved numerically

 dd /)0(
 Solution depends on two parameters: the Prandtl 

number Pr and the exponent n in (4.72)                    is 
presented in Fig. 4.8 for three Prandtl numbers.   
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0 1.00.5 1.5

1.0

n

2.0

0.7Pr

10

30



d

d )0( etemperatur surface varying with platefor 4.8 Fig.



d

d )0(

n
s xCTxT  )(

4.4.3 Laminar Boundary Layer Flow over a    
Wedge: Uniform Surface Temperature

94

 Symmetrical flow over 
a wedge of angle 

 Uniform surface 
temperature

 Uniform upstream 
velocity, pressure and 
temperature 

 For assumptions of Section 4.3, the x-momentum eq. is 

outside the viscous BL vary with distance x along wedge
 Both pressure and velocity

2

21

y

u

dx

dp

y

u

x

u
u










  


v (4.13)

mC is a constant and     describes wedge angle: 
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2

m (4.83)

dx
dp Apply (4.13) at edge of BL to determine           :

 Flow is inviscid
0v

)(xVu 

x
V

V
dx
dp


 





1

Substitute into (4.13)

2

2

y

u

x

V
V

y

u

x

u
u















 

 v (4.84)
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The B.C. are
mCxxVxu   )(),( (4.84a)

0)0,( xu (4.84b)

0)0,( xv (4.84c)

(i) Velocity Solution:

 By similarity transformation (follow Blasius approach)

 Define a similarity variable     :

2/)1()(
),(   mx

C
y

x
xV

yyx





(4.86)

 Assume u(x, y) to depend on  :

d
dF

xV

u


 )(
(4.87)
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vContinuity (2.2), (4.86) and (4.87) give  
















 

d
dF

m
m

F
m

xxV
xV

1
1

2
1

)(
)(v (4.88)

Substitute (4.82) and (4.86)-(4.88) into (4.84)

0
2

1
2

2

2

3

3









 m
d

dF
m

d

Fd
F

m

d

Fd


(4.89)

This is the transformed momentum equation B. C. (4.85) 
transform to 

0
)0(


d

dF
(4.89a)

0)0( F (4.89b)

1
)( 

d
dF

(4.89c)
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Note the following regarding (4.89) and (4.90):

 x and y do not appear 

 Momentum eq. (4.89) is 3rd order non-linear 

0 m Special case:                    represents a flat plate

 Setting             in (4.89) and (4.90) reduces to Blasius 
problem (4.44) & (4.45),  

0m
)()(  fF 

 (4.89) is integrated numerically

)(F ddF / u v Solution gives           and               . These give    and

(ii) Temperature Solution:

Energy equation:

2

2

yyx
u










 

v (4.59)
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Boundary conditions:
0)0,( x (4.60a)

1)0,( x (4.60b)

1)0,( x (4.60c)

where 

s

s

TT
TT





 (4.58)

 Same energy equation and B.C. as the flat plate. 

 Is temperature distribution the same?

 Equation (4.59) is solved by similarity transformation. 
Assume: 

)(),(  yx (4.75)

where 
100

2/)1()(
),(   mx

C
y

x
xV

yyx





(4.86)

Substitute (4.86)-(4.88) and (4.75) into (4.59) and (4.60)

1)(  (4.92b)

0)0(  (4.92a)

1)(  (4.92c)

0)()1(
22

2








d

d
Fm

Pr

d

d
(4.91)

 Partial differential equations is transformed into 
ordinary equation 

 Two governing parameters: Prandtl number Pr and the 
wedge size m

 (491) a linear second order equation requiring two B.C.
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)(F in (4.91) represents effect of fluid motion

 B.C. (4.60b) and (4.60c) coalesce into a single condition

0 m 0m Special case:                    represents flat plate. Set            
in (4.91) reduces to Pohlhausen’s problem (4.61)

Solution: (Details in Appendix B)

 Separate variables in (4.91)

 Integrate twice 

 Applying B.C. (4.92), gives 












ddF

ddF

 

 








 






 




0 0

0

)(
2

exp

)(
2

exp

1)(
Pr

Pr

1)(m

1)(m

(4.93)
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d

d )0(
Temperature gradient at surface :

0 Differentiate (4.93), evaluate at

1

0 0
)(

2
exp

)0(














 
   


 

ddF
Pr

d
d 1)(m

(4.94)

)(F is given in the velocity solution

 Evaluate integrals in (4.93)&(4.94) numerically



d

d )0(
)0(F  Results for               and              are in Table 4.3 
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wedge angle        
.   

at five values of  Pr dd /)0(

(36o)5/



d

d )0(

)0(F 

Table 4.3   Surface temperature gradient            and 

velocity gradient           for flow over an isothermal wedge

m (0)F 
0.7 0.8 1.0 5.0 10.0

0 0 0.3206 0.292 0.307 0.332 0.585 0.730

0.111 0.5120 0.331 0.348 0.378 0.669 0.851

0.333 2/ (90o) 0.7575 0.384 0.403 0.440 0.792 1.013

1.0  (180o) 1.2326 0.496 0.523 0.570 1.043 1.344

)(xh xNu Use Table 4.3 to determine           and
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TT
y
xT

kh
s

)0,(

(1.10)

where

yd
d

d
dT

y
xT





 





)0()0,(

Use (4.58),(4.75) and (4.86) into above




 d
d

x
xV

TT
y
xT

s
)0()(

)(
)0,( 

 




Substitute into (1.10) 




 d
d

x
xV

kxh
)0()(

)(  (4.95)

Local Nusselt number: substitute (4.95) into (4.54) 
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xx Re
d

d
Nu


 )0( (4.96)

where


)(xxV

Rex
 (4.97)

)(xh xNu



d

d )0(
 Key factor in determining           and           : 

Surface temperature gradient is             , listed in Table 4.3.
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