CHAPTER 4

BOUNDARY LAYER FLOW

APPLICATION TO EXTERNAL FLOW

4.1 Introduction

• Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations

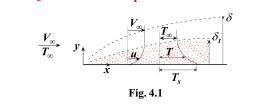
• Two key questions

(1)What are the conditions under which terms in the governingequations can be dropped?

(2) What terms can be dropped?

- Answer: By two approaches
- Intuitive arguments
- Scale analysis

4.2 The Boundary Layer Concept: Simplification of Governing Equations4.2.1 Qualitative Description



Under certain conditions the action of viscosity is confined to a thin region near the surface called the viscous or velocity boundary layer

Under certain conditions thermal interaction between moving fluid and a surface is confined to a thin region near the surface called the thermal or temperature boundary layer

• Conditions for viscous boundary layer:

(1) Slender body without flow separation(2) High Reynolds number (*Re* > 100)

• Conditions for thermal boundary layer:

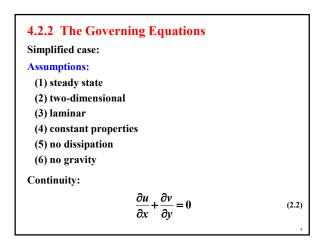
(1) Slender body without flow separation (2) High product of Reynolds and Prandtl numbers (*RePr* > 100)

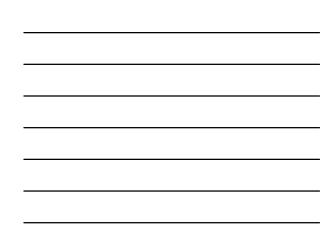
(4.1)

k

Peclet Number = $Pe = RePr = \frac{\rho V_{\infty}L}{r} \frac{c_p \mu}{r} = \frac{\rho c_p V_{\infty}L}{r}$ μk

- (2) Rapid changes across BL to V_{∞}
- (3) Rapid changes temperature across BL from T_s to T_{∞}
- (2) Boundary layers are thin: For air at 10 m/s parallel to 1.0 m long plate, $\delta = 6$ mm at end (3) Viscosity plays negligible role outside the viscous BL
- (4) Boundary layers exist in both forced and free convection flows



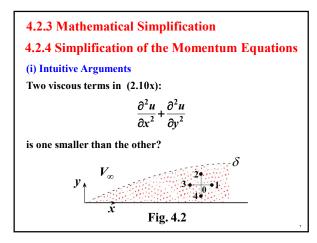


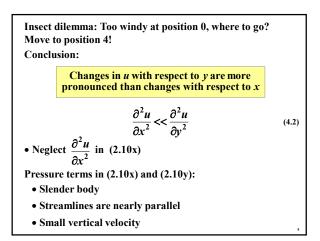
x-direction:

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = \rho g_x - \frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) \quad (2.10x)$$
y-direction:

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = \rho g_z - \frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right) \quad (2.10y)$$
Energy:

$$\rho c_P\left(u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y}\right) = k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) \quad (2.19)$$





$$\frac{\partial p}{\partial y} \approx 0 \qquad (4.3)$$

$$\therefore p \text{ depends on } x \text{ only, i.e. } p \approx p(x)$$

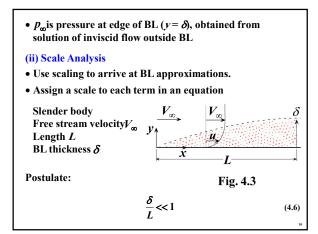
$$\frac{\partial p}{\partial x} \approx \frac{dp}{dx} \approx \frac{dp_{\infty}}{dx} \qquad (4.4)$$

$$(4.2) \text{ and } (4.4) \text{ into } (2.10x) \text{ gives:}$$

$$Boundary layer x-momentum equation$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{dp_{\infty}}{\partial x} + v \frac{\partial^2 u}{\partial y^2} \qquad (4.5)$$

• Continuity equation (2.2) and the x-momentum boundary layer equation (4.5) contain three unknowns: u, v, and P_{∞}



If (4.6) is valid, we pose three questions:	
(1) What terms in the governing equations can dropped?	an be
(2) Is normal pressure gradient negligible con axial pressure gradient?	mpared to
(3). <i>Under what conditions is</i> (4.6) <i>valid</i> ? Assign scales:	
$u \sim V_{\infty}$	(4.7a)
$u \sim V_{\infty}$ $y \sim \delta$ $x \sim L$	(4.7b)
$x \sim L$	(4.7c)
Apply (4.7) to continuity (2.2)	
$\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$	
.	

Using (4.7) $\frac{v}{\delta} \sim \frac{V_{\infty}}{L}$	
Solving for v $v \sim V_{\infty} \frac{\delta}{L}$	(4.7d)
Conclusion: $v \ll V_{\infty}$	
Order of magnitude of inertia and viscous terms x-momentum equation (2.10x)	
• First inertia term:	
$u\frac{\partial u}{\partial x} \sim V_{\infty}\frac{V_{\infty}}{L}$	(a)
 Second inertial term: 	
$v \frac{\partial u}{\partial y} \sim v \frac{V_{\infty}}{\delta}$	
	12

Use (4.7d) $v \frac{\partial u}{\partial y} \sim V_{\infty}$	$\frac{V_{\infty}}{L}$ (b)
Conclusion: 2 inertia terms are o	of the same order
Examine 2 viscous terms in (2.10 • First viscous term:	x)
$\frac{\partial^2 u}{\partial x^2} \sim \frac{1}{2}$	$\frac{\sqrt{\infty}}{L^2}$ (c)
 Second viscous term: 	
$\frac{\partial^2 u}{\partial y^2} \sim \frac{1}{\partial y^2}$	$\int_{\infty}^{\infty} dd dt = \int_{\infty}^{\infty} $
Conclusion: $\frac{\partial^2 u}{\partial x^2} < < \frac{\partial^2 u}{\partial x^2}$	$\frac{\partial^2 u}{\partial y^2}$ (4.2)
$\therefore \text{ Neglect } \partial^2 u / \partial x^2 \text{ in } (2.10x)$	13

Examine 2 viscous terms in (2.10y)

$$\frac{\partial^2 v}{\partial x^2} << \frac{\partial^2 v}{\partial y^2} \qquad (4.8)$$
Simplify (2.10x) and (2.10y) Using (4.2) and (4.8)

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 u}{\partial y^2} \qquad (4.9x)$$

$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \frac{\partial^2 v}{\partial y^2} \qquad (4.9y)$$
This answers first question
• Second question: pressure gradient
Scale $\frac{\partial p}{\partial x}$ and $\frac{\partial p}{\partial y}$

Balance axial pressure with inertia in (4.9x)	
$\frac{\partial p}{\partial x} \sim \rho u \frac{\partial u}{\partial x}$	(e)
Scale using (4.7) $\frac{\partial p}{\partial x} \sim \rho \frac{V_{\infty}^2}{L}$	
Balance pressure with inertial in (4.9y)	
$\frac{\partial p}{\partial y} \sim \rho \frac{V_{\infty}^2}{L} \frac{\delta}{L}$	(f)
Compare (e) and (f) using (4.6)	
$\frac{\partial p}{\partial y} \ll \frac{\partial p}{\partial x}$	(4.10)
	15

Since $p = p(x, y)$	
$dp = \frac{\partial p}{\partial x}dx + \frac{\partial p}{\partial y}dy$	
$\frac{dp}{dx} = \frac{\partial p}{\partial x} \left[1 + \frac{(\partial p / \partial y)}{(\partial p / \partial x)} \frac{dy}{dx} \right]$	(4.11)
Scale $\frac{dy}{dx}$ $\frac{dy}{dx} \sim \frac{\delta}{L}$	(g)
(e)-(g) into (4.11)	
$\frac{dp}{dx} = \frac{\partial p}{\partial x} \left[1 + \left(\delta / L \right)^2 \right]$	(h)
Invoke(4.6) $\frac{dp}{dx} \approx \frac{\partial p}{\partial x}$	(i) 16

Conclu	sion	
	Boundary layer pressure depends on <i>x</i> only. Variation with <i>y</i> is negligible	
. Pres	ssure $p(\mathbf{x})$ inside BL = pressure $p_{\infty}(\mathbf{x})$ at edge	ge
	$p(x,y) \approx p_{\infty}(x)$	(j)
(4.12) i	$ \therefore \qquad \qquad \frac{\partial p}{\partial x} \approx \frac{dp_{\infty}}{dx} $ nto (4.9x)	(4.12)
	$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{dp_{\infty}}{dx} + v\frac{\partial^2 u}{\partial y^2}$	(4.13)
. ,	s x-momentum eq. for BL flow. Result is base otion that $\delta/L \ll 1$.	ed on key

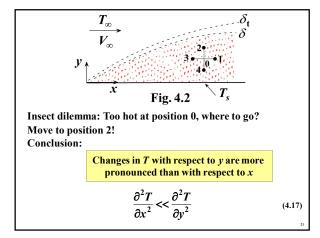
• Third question:	condition for validity of (4.6)	
	$\frac{\delta}{L}$ << 1	(4.6)
Balance inertia wi	th viscous force in (4.13)	
Inertia:	$u\frac{\partial u}{\partial x} \sim V_{\infty}\frac{V_{\infty}}{L}$	(a)
Viscous:	$v\frac{\partial^2 u}{\partial y^2} \sim v\frac{V_{\infty}}{\delta^2}$	(b)
Equate	$\frac{V_{\infty}^2}{L} \sim v \frac{V_{\infty}}{\delta^2}$	
Rearrange	$\frac{\delta}{L} \sim \sqrt{\frac{\nu}{V_{\infty}L}}$	(4.14a) 18

or
$$\frac{\delta}{L} \sim \frac{1}{\sqrt{Re_L}}$$
 (4.14b)
where $Re_L = \frac{V_{\infty}L}{v}$ (4.15)
 $\frac{\delta}{L} <<1$ when $\sqrt{Re_L} >>1$
Generalized (4.14)
 $\frac{\delta}{x} \sim \frac{1}{\sqrt{Re_x}}$ (4.16)

4.2.5 Simplification of the Energy Equation
Simplify (2.19)

$$\rho c_{\rm P} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \qquad (2.19)$$
(i) Intuitive Arguments
Two conduction terms in (2.19):

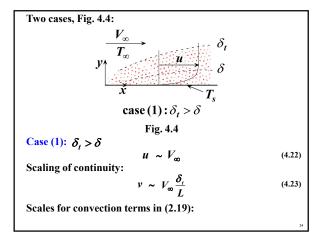
$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$$
is one smaller than the other?



• Neglect
$$\frac{\partial^2 T}{\partial x^2}$$
 in (2.19):
 $u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}$ (4.18)
(4.18) is the *boundary layer energy equation*.
(ii) Scale Analysis
• Use scaling to arrive at BL approximations
• Assign a scale to each term in an equation
Slender body
Free stream velocity V_{∞}
Free stream temperature T_{∞}
Length L
BL thickness δ_t

Postulate:
$$\frac{\delta_t}{L} << 1$$
(4.19)If (4.19) is valid, we pose two questions:(1)(1)(1) What terms in (2.19) can be dropped?(2)(2) Under what conditions is (4.19) valid?• Answer first questionAssign scales: $y \sim \delta_t$ $\Delta T \sim T_s - T_{\infty}$ (4.20) $\Delta T \sim T_s - T_{\infty}$ (4.21) $x \sim L$ (4.7b)Scales for u and v depend on whether δ_t is larger or smaller

than δ .



Use (4.7b) and (4.2	20-4.23)	
and	$u\frac{\partial T}{\partial x} \sim V_{\infty} \frac{\Delta T}{L}$ $v\frac{\partial T}{\partial y} \sim V_{\infty} \frac{\Delta T}{L}$	(a) (b)
Conclusion: the tw	vo terms are of the same order	
Scale for conducti	on terms:	
and	$\frac{\partial^2 T}{\partial x^2} \sim \frac{\Delta T}{L^2}$	(c)
	$\frac{\partial^2 T}{\partial y^2} \sim \frac{\Delta T}{\delta_t^2}$	(d)
Compare (c) with	(d), use : $\frac{\delta_t}{L} \ll 1$	25

$$\therefore \frac{\partial^2 T}{\partial x^2} << \frac{\partial^2 T}{\partial y^2} \qquad (e)$$

$$\therefore \text{ Energy equation simplifies to} \qquad u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} \qquad (4.18)$$
Second question: Under what conditions is (4.19) valid?
$$\frac{\delta_t}{L} << 1 \qquad (4.19)$$
Balance between convection and conduction:
$$u \frac{\partial T}{\partial x} \sim \alpha \frac{\partial^2 T}{\partial y^2}$$
Scaling
$$V_{\infty} \frac{\Delta T}{L} \sim \alpha \frac{\Delta T}{\delta_t^2}$$

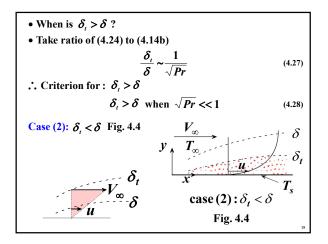
or

$$\frac{\delta_{i}}{L} \sim \sqrt{\frac{\alpha}{V_{\infty}L}}$$
or

$$\frac{\delta_{i}}{L} \sim \sqrt{\frac{k}{\rho c_{p}V_{\infty}L}}$$
or

$$\frac{\delta_{i}}{L} \sim \sqrt{\frac{1}{\sqrt{\rho r R e_{L}}}}$$
(4.24)
Conclusion:

$$\frac{\delta_{i}}{L} <<1 \text{ when } \sqrt{\rho r R e_{L}} >>1$$
(4.25)
Define Peclet number Pe
 $Pe = Pr R e_{L}$
(4.26)
Example: For $Pe = 100, \frac{\delta_{i}}{L} \sim 0.1$



• <i>u</i> within the thermal boundary layer is smaller than free stream velocity	
• Similarity of triangles	
$u \sim V_{\infty} \frac{\delta_{\iota}}{\delta}$	(4.29)
Scaling of continuity	
$v \sim V_{\infty} \frac{\delta_t^2}{L\delta}$	(4.30)
Use (4.29), (4.30) and follow procedure of case (1): conclusion:	
(1) The two terms are of the same order	
(2) Axial conduction is negligible compared to non conduction	rmal

Second question: Under what conditions is (4.19) valid
--

Balance between convection and conduction:	
$u\frac{\partial T}{\partial x}\sim \alpha\frac{\partial^2 T}{\partial y^2}$	
Use (4.29) for <i>u</i> , scale each term	
$V_{\infty} \frac{\delta_t}{\delta} \frac{\Delta T}{L} \sim \alpha \frac{\Delta T}{\delta_t^2}$	
or	
$\left(\delta_t/L\right)^3 \sim \frac{k}{\rho c_p V_{\infty} L} \frac{\delta}{L}$	(f)
However $\frac{\delta}{L} \sim \frac{1}{\sqrt{Re_L}}$	(4.14b)
Substitute into (f)	30



$$\frac{\delta_t}{L} \sim \frac{1}{Pr^{1/3}\sqrt{Re_L}}$$
(4.31)
Conclusion:

$$\frac{\delta_t}{L} <<1 \text{ when } Pr^{1/3}\sqrt{Re_L} >>1$$
(4.32)
• When is $\delta_t < \delta$?
• Take ratio of (4.31) to (4.14b)

$$\frac{\delta_t}{\delta} \sim \frac{1}{Pr^{1/3}}$$
(4.33)
 \therefore Criterion for : $\delta_t < \delta$
 $\delta_t < \delta$ when $Pr^{1/3} >>1$ (4.34)

4.3 Summary of Boundary Layer Equations for Steady Laminar Flow

Assumptions:

- (1) Newtonian fluid
- (2) two-dimensional
- (3) negligible changes in kinetic and potential energy
- (4) constant properties
- Assumptions leading to boundary layer model
- (5) slender surface
- (6) high Reynolds number (Re > 100)
- (7) high Peclet number (Pe > 100)

 Introduce additional simplifications: 	
(8) steady state	
(9) laminar flow	
(10) no dissipation ($\boldsymbol{\Phi} = 0$)	
(11) no gravity and	
(12) no energy generation ($q^m = 0$)	
Governing boundary layer equations:	
Continuity:	
$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$	(2.2)
$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{dp_{\infty}}{dx} + v\frac{\partial^2 u}{\partial y^2}$	(4.13)
	33



Energy:

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}$$
(4.18)

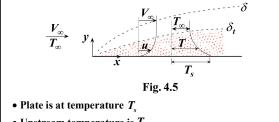
Note the following:

- (1) Continuity is not simplified for boundary layer flow
- (2) Pressure in (4.13) is obtained from inviscid solution outside BL. Thus (2.2) and (4.13) have two unknowns: *u* and *v*
- (3) To include buoyancy, add $\rho\beta g(T T_{\infty})$ to right (4.13)

(4) Recall all assumptions leading the 3 equations

4.4 Solutions: External Flow

- Streamlined body in an infinite flow
- Examine thermal interaction
- Need temperature distribution T
- Temperature depends on velocity distribution
- For constant properties, velocity distribution is independent of temperature
- 4.4.1 Laminar Boundary Layer Flow over Semi-infinite Flat Plate: Uniform Surface Temperature

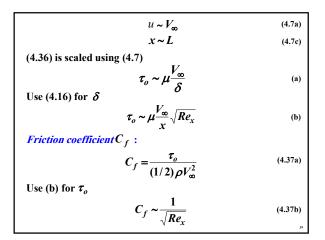


- Upstream temperature is T_{∞}
- Upstream velocity uniform and parallel
- For assumptions listed in Section 4.3 the continuity, momentum and energy are given in (2.2), (4.13) and (4.18)
- Transition from laminar to turbulent at:

 $Re_t = V_{\infty} x_t / \nu \approx 500,000$

 (i) Velocity Distribution Find: Velocity distribution Boundary layer thickness δ(x) Wall shearing stress τ_o(x) (a) Governing equations and boundary conditions: Continuity and a momentum 	
Continuity and <i>x</i> -momentum:	
$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$	(2.2)
$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{dp_{\infty}}{dx} + v\frac{\partial^2 u}{\partial y^2}$	(4.13)
The velocity boundary conditions are:	
u(x,0)=0	(4.35a)
v(x,0) = 0	(4.35b) 37

$u(x,\infty) = V_{\infty}$	(4.35c)
$u(0,y) = V_{\infty}$	(4.35d)
(b) Scale analysis: Find $\delta(x)$ and $ au_o(x)$	
Result of Section 4.2.4:	
$\frac{\delta}{x} \sim \frac{1}{\sqrt{Re_x}}$	(4.16)
Wall stress τ_o : $\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$	(2.7a)
At wall $y = 0$, $v(x,0) = 0$	
$\tau_o = \mu \frac{\partial u(x,0)}{\partial y}$	(4.36)
Scales for <i>u</i> and <i>y</i> :	
	38



(c) Blasius solution: similarity method

- Solve (2.2) and (4.13) for the u and v
- Equations contain 3 unknowns: u, v, and P_{∞}
- Pressure is obtained from the inviscid solution outside BL

Inviscid solution:

- Uniform inviscid flow over slightly curved edge BL
- Neglect thickness ${oldsymbol \delta}$
- Model: uniform flow over a flat plate of zero thickness
- Solution:

$$u = V_{\infty}, \quad v = 0, \quad p = p_{\infty} = \text{constant}$$
 (4.38)

Thus the pressure gradient is

$$\frac{dp_{\infty}}{dx} = 0 \tag{4.39}$$

(4.39) into (4.13)

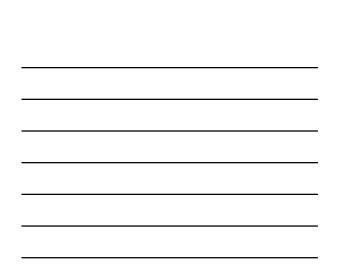
$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2}$$
(4.40)
• (4.40) is nonlinear
• Must be solved simultaneously with continuity (2.2)
• Solution was obtained by Blasius in 1908 using

similarity transformation:

Combine x and y ito a single variable $\eta(x, y)$

$$\eta(x,y) = y_{\sqrt{\frac{V_{\infty}}{\nu x}}}$$
(4.41)

Postulate that $\frac{u}{V_{\infty}}$ depends on $\eta(x, y)$ only



$$\frac{u}{V_{\infty}} = \frac{df}{d\eta}$$
(4.42)
 $f = f(\eta)$ to be determined
NOTE:
(1) Including $\sqrt{V_{\infty}/\nu}$ in definition of η , is for convenience
only
(1) $\eta(x, y)$ in (4.41) is arrived at by formal procedure
Continuity (2.2) gives ν :
 $\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$
Multiplying by dy , integrate
 $\nu = -\int \frac{\partial u}{\partial x} dy$ (a)

Use (4.41) and (4.42) to express
$$dy$$
 and $\partial u / \partial x$ in terms of
the variable η
 $dy = \sqrt{\frac{V_{\infty}}{v x}} d\eta$ (b)
Chain rule:
 $\frac{\partial u}{\partial x} = \frac{du}{d\eta} \frac{d\eta}{dx}$
Use (4.41) and (4.42) into above
 $\frac{\partial u}{\partial x} = -\frac{V_{\infty}}{2x} \frac{d^2 f}{d\eta^2} \eta$ (c)
(b) and (c) into (a)
 $\frac{v}{V_{\infty}} = \frac{1}{2} \sqrt{\frac{v}{V_{\infty}x}} \int \frac{d^2 f}{d\eta^2} \eta d\eta$

Integration by parts gives

$$\frac{v}{V_{\infty}} = \frac{1}{2} \sqrt{\frac{v}{V_{\infty}x}} \left(\eta \frac{df}{d\eta} - f \right)$$
(4.43)
• Need function $f(\eta)$, use momentum equation
First determine $\frac{\partial u}{\partial y}$ and $\frac{\partial^2 u}{\partial y^2}$
 $\frac{\partial u}{\partial y} = \frac{du}{d\eta} \frac{d\eta}{dy} = V_{\infty} \frac{d^2 f}{d\eta^2} \sqrt{\frac{V_{\infty}}{vx}}$ (d)

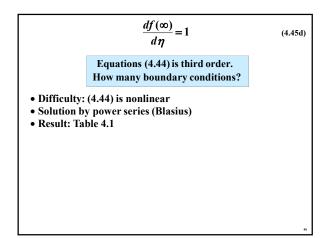
$$\frac{\partial^2 u}{\partial y^2} = V_{\infty} \frac{d^3 f}{d\eta^3} \frac{V_{\infty}}{v x}$$
(e)

(4.42), (4.43) and (c)-(e) into (4.40)

$$2\frac{d^3 f}{d\eta^3} + f(\eta)\frac{d^2 f}{d\eta^2} = 0 \qquad (4.44)$$
Partial differential equations are transformed
into an ordinary differential equation
NOTE: x and y are eliminated in (4.44)
• Transformation of boundary conditions
$$\frac{df(\infty)}{d\eta} = 1 \qquad (4.45a)$$

$$f(0) = 0 \qquad (4.45b)$$

$$\frac{df(0)}{d\eta} = 0 \qquad (4.45c)$$

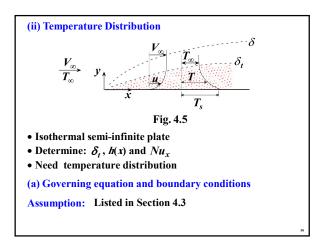


Tabl	Table 4.1 Blasius solution [1]			
$\eta = \mathbf{y}_{\sqrt{\frac{V_{\infty}}{v\mathbf{x}}}}$	f	$\frac{df}{d\eta} = \frac{u}{V_{\infty}}$	$\frac{d^2f}{d\eta^2}$	
0.0	0.0	0.0	0.33206	
0.4	0.02656	0.13277	0.33147	
0.8	0.10611	0.26471	0.32739	
2.4	0.92230	o.72899	0.22809	
2.8	1.23099	0.81152	0.18401	
3.2	1.56911	0.87609	0.13913	
3.6	1.92954	0.92333	0.09809	
4.0	2.30576	0.95552	0.06424	
4.4	2.69238	0.97587	0.03897	
4.8	3.08534	0.98779	0.02187	
5.0	3.28329	0.99155	0.01591	
5.2	3.48189	0.99425	0.01134	
5.4	3.68094	0.99616	0.00793	
5.6	3.88031	0.99748	0.00543	

 Find δ(x) wall stress τ_o(x) Define δ as the distance y fr u/V_m = 0.994, Table 4.1 give 	
w / S	$2\sqrt{\frac{\nu x}{V_{\infty}}}$
$\frac{\delta}{x} = -$	$\frac{5.2}{\sqrt{Re_x}} \tag{4.46}$
Scaling result: $\frac{\delta}{x} \sim \frac{\delta}{x}$	$\frac{1}{\sqrt{Re_x}} \tag{4.16}$
• Wall stress $ au_o$: use	
$ au_o = \mu$	$\frac{\partial u(x,0)}{\partial y} \tag{4.36}$

(d) into (4.36), use Table 4.1

$$\tau_o = \mu V_{\infty} \sqrt{\frac{V_{\infty}}{v x}} \frac{d^2 f(0)}{d\eta^2} = 0.33206 \,\mu V_{\infty} \sqrt{\frac{V_{\infty}}{v x}} \qquad (4.47)$$
Friction coefficient C_f : (4.47) into (4.37a)
 $C_f = \frac{0.664}{\sqrt{Re_x}} \qquad (4.48)$
Scaling result:
 $C_f \sim \frac{1}{\sqrt{Re_x}} \qquad (4.37b)$



Energy equation

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} \qquad (4.18)$$
The boundary condition are:

$$T(x,0) = T_s \qquad (4.49a)$$

$$T(x,\infty) = T_{\infty} \qquad (4.49b)$$

$$T(0, y) = T_{\infty} \qquad (4.49c)$$
(b) Scale analysis: δ_t , $h(x)$ and Nu_x
From Section 4.2.5: Set $L = x$ (4.24) and (4.31)
Case (1): $\delta_t > \delta$ ($Pr <<1$)

$$\frac{\delta_t}{x} \sim \frac{1}{\sqrt{PrRe_x}} \qquad (4.50)$$

Case (2):
$$\delta_t < \delta$$
 (*Pr>>*1)
 $\frac{\delta_t}{x} \sim \frac{1}{Pr^{1/3} \sqrt{Re_x}}$ (4.51)
Heat transfer coefficient $h(x)$
 $h = -k \frac{\frac{\partial T(x,0)}{\partial y}}{T_s - T_{\infty}}$ (1.10)
Use scales of (4.20) and (4.21) into above
 $h \sim \frac{k}{\delta_t}$ (4.52)
Where δ_t is given by (4.50) and (4.51).

$$\begin{aligned} & \text{Case (1): } \delta_t > \delta \ (Pr << 1), (4.50) \text{ into } (4.52) \\ & h \sim \frac{x}{k} \sqrt{PrRe_x} \ , \ \text{ for } Pr << 1 \ (4.53) \\ & \text{Local Nusselt number } Nu_x \\ & Nu_x = \frac{hx}{k} \ (4.54) \\ & (4.53) \text{ into } (4.54) \\ & Nu_x \sim \sqrt{PrRe_x} \ , \ \text{ for } Pr << 1 \ (4.55) \\ & \text{Case (2): } \delta_t << \delta \ (Pr >> 1). \\ & \text{Substituting } (4.51) \text{ into } (4.52) \\ & h \sim \frac{k}{x} Pr^{1/3} \sqrt{Re_x} \ , \ \text{ for } Pr >> 1 \ (4.56) \\ & \text{Nusselt number: } \\ & Nu_x \sim Pr^{1/3} \sqrt{Re_x} \ , \ \text{ for } Pr >> 1 \ (4.57) \\ & \text{Local Nusself number: } \end{aligned}$$

(c) Pohlhausen's solution:
$$T(x,y)$$
, δ_t , $h(x)$, Nu_x
• Energy equation (4.18) is solved analytically
• Solution by Pohlhausen (1921) using similarity
transformation
• Defined θ
 $\theta = \frac{T - T_s}{T_{\infty} - T_s}$ (4.58)
(4.58) into (4.18)
 $u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} = \alpha \frac{\partial^2 \theta}{\partial y^2}$ (4.59)
B.C.
 $\theta(x,0) = 0$ (4.60a)
 $\theta(x,0) = 1$ (4.60b)
 $\theta(x,0) = 1$ (4.60c)

• Solve (4.59) and (4.60) using similarity
• Introduce transformation variable
$$\eta$$

 $\eta(x, y) = y \sqrt{\frac{V_{\infty}}{v x}}$ (4.41)
Assume
 $\theta(x, y) = \theta(\eta)$
• Blasius solution gives u and v
 $\frac{u}{V_{\infty}} = \frac{df}{d\eta}$ (4.42)
 $\frac{v}{V_{\infty}} = \frac{1}{2} \sqrt{\frac{v}{V_{\infty} x}} \left(\eta \frac{df}{d\eta} - f\right)$ (4.43)
(4.41)-(4.43) into (4.59) and noting that

$$\frac{\partial \theta}{\partial x} = \frac{d\theta}{d\eta} \frac{\partial \eta}{\partial x} = -\frac{\eta}{2x} \frac{d\theta}{d\eta}$$

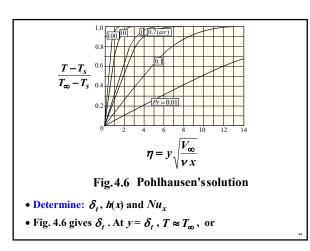
$$\frac{\partial \theta}{\partial y} = \frac{d\theta}{d\eta} \frac{\partial \eta}{\partial y} = \sqrt{\frac{V_{\infty}}{v x}} \frac{d\theta}{d\eta}$$

$$\frac{\partial^2 \theta}{\partial y^2} = \frac{V_{\infty}}{v x} \frac{d^2 \theta}{d\eta^2}$$
(4.59) becomes
$$\frac{d^2 \theta}{d\eta^2} + \frac{Pr}{2} f(\eta) \frac{d\theta}{d\eta} = 0 \qquad (4.61)$$
Result:
Partial differential equation is transformed into an ordinary differential equation

NOTE:
(1) One parameter: Prandtl number *Pr*
(2) (4.61) is linear, 2nd order ordinary D.E.
(3)
$$f(\eta)$$
 in (4.61) represents the effect motion
Transformation of B.C.:
 $\theta(\infty) = 1$ (4.62a)
 $\theta(0) = 0$ (4.62b)
 $\theta(\infty) = 1$ (4.62c)
Solution: Separate variables, integrate twice, use B.C.
(4.62) (Details in Appendix)
 $\theta(\eta) = 1 - \frac{\int_{\eta}^{\infty} \left[\frac{d^2 f}{d\eta^2}\right]^{P_r} d\eta}{\int_{0}^{\infty} \left[\frac{d^2 f}{d\eta^2}\right]^{P_r} d\eta}$ (4.63)

Surface temperature gradient:

$$\frac{d\theta(0)}{d\eta} = \frac{\left[0.332\right]^{P_r}}{\int_{\eta}^{\infty} \left[\frac{d^2 f}{d\eta^2}\right]^{P_r}} d\eta \qquad (4.64)$$
• Integrals are evaluated numerically
• $\frac{d^2 f}{d\eta^2}$ is obtained from Blasius solution
• Results are presented graphically in Fig. 4.6



$$\theta = \frac{T - T_s}{T_{\infty} - T_s} \approx 1 , \text{ at } y = \delta_t$$
• Fig. 4.6 shows that $\delta_t(x)$ depends on Pr
• Local heat transfer coefficient $h(x)$: use (1.10)
 $\partial T(x,0)$

(1.10)

where

$$h = -k \frac{\partial y}{T_s - T_{\infty}}$$
$$\frac{\partial T(x,0)}{\partial y} = \frac{dT}{d\theta} \frac{d\theta(0)}{d\eta} \frac{\partial \eta}{\partial y}$$

h = -k

$$\frac{\partial y}{\partial y} = \frac{\partial \theta}{\partial \theta} \frac{\partial \eta}{\partial \eta} \frac{\partial y}{\partial y}$$

Use (4.41) and (4.58) into above
$$\frac{\partial T(x,0)}{\partial y} = (T_{\infty} - T_{s}) \sqrt{\frac{V_{\infty}}{v x}} \frac{\partial \theta(0)}{\partial \eta}$$

Substitute into (1.10)

$$h(x) = k \sqrt{\frac{V_{\infty}}{v \, x}} \frac{d\theta(0)}{d\eta} \qquad (4.66)$$
• Average heat transfer coefficient:

$$\bar{h} = \frac{1}{L} \int_{0}^{L} h(x) dx \qquad (2.50)$$
Use (4.66) and integrate

$$\bar{h} = 2 \frac{k}{L} \sqrt{Re_{L}} \frac{d\theta(0)}{d\eta} \qquad (4.67)$$
• Local Nusselt number: (4.66) into (4.54)

$$Nu_{x} = \frac{d\theta(0)}{d\eta} \sqrt{Re_{x}} \qquad (4.68)$$

• Average Nusselt number:

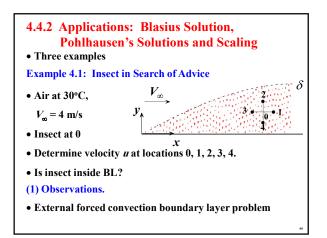
$$\overline{Nu_L} = 2 \frac{d\theta(0)}{d\eta} \sqrt{Re_L} \qquad (4.69)$$
• Total heat transfer rate q_T :
Plate length L and width W . Apply Newton's law
 $q_T = \int_0^L h(x)(T_s - T_{\infty})W dx =$
 $(T_s - T_{\infty})W \int_0^L h(x) dx = (T_s - T_{\infty})WL \overline{h}$
or
 $q_T = (T_{s_s} - T_{\infty})A \overline{h} \qquad (4.70)$
Heat transfer coefficient and Nusselt number
depend on surface temperature gradient $\frac{d\theta(0)}{d\eta}$

$d\theta(0)$, , p	Tab	le 4.2
• $\frac{d\theta(0)}{d\eta}$ depends on <i>Pr</i>	Pr	$\frac{d\theta(0)}{d\eta}$
• It is determined from (4.64)	0.001	0.0173
• Values in Table 4.2	0.01	0.0516
• Approximate values of	0.1	0.140
	0.5	0.259
$\frac{d\theta(0)}{d\eta}$ are given by:	0.7	0.292
dη	1.0	0.332
	7.0	0.645
	10.0	0.730
	15.0	0.835
	50	1.247
	100	1.572
	1000	3.387

$$\frac{d\theta(0)}{d\eta} = 0.564 Pr^{1/2}, Pr < 0.05$$
(4.71a)
$$\frac{d\theta(0)}{d\eta} = 0.332 Pr^{1/3}, 0.6 < Pr < 10$$
(4.71b)
$$\frac{d\theta(0)}{d\eta} = 0.339 Pr^{1/3}, Pr > 10$$
(4.71c)
• Compare with scaling:
• Two cases: $Pr << 1$ and $Pr >> 1$
Combine (4.71a) and (4.71c) with (4.68)
 $Nu_x = 0.564 Pr^{1/2} \sqrt{Re_x}$, for $Pr < 0.05$ (4.72a)
 $Nu_x = 0.339 Pr^{1/3} \sqrt{Re_x}$, for $Pr > 10$ (4.72c)

Scaling results:

$$Nu_x \sim \sqrt{PrRe_x}$$
, for $Pr \ll 1$ (4.55)
 $Nu_x \sim Pr^{1/3} \sqrt{Re_x}$, for $Pr \gg 1$ (4.57)
• Fluid properties: Evaluated at the film temperature T_f
 $T_f = \frac{T_s + T_\infty}{2}$ (4.73)



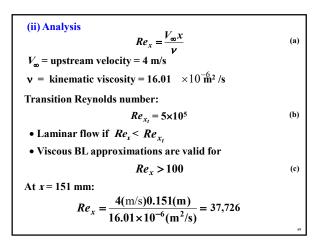
- Changes in velocity between 1 and 3 should be small compared to those between 2 and 4
- Location 4 should have the lowest velocity
- If the flow is laminar Blasius applies
- The flow is laminar if Reynolds number is less than 500,000
- (2) Problem Definition. Determine *u* at the five locations

(3) Solution Plan.

- Check the Reynolds number for BL approximations and if the flow is laminar
- If laminar, use Blasius solution, Table 4.1, to determine u and δ
- (4) Plan Execution

(i) Assumptions. All assumptions leading to Blasius solution: These are:

- Newtonian fluid
- steady state
- constant properties
- two-dimensional
- laminar flow ($Re_x < 5 \times 10^5$)
- viscous boundary layer flow ($Re_x > 100$)
- (7) uniform upstream velocity
- flat plate
- negligible changes in kinetic and potential energy
- no buoyancy ($\beta = 0$ or g = 0)



... BL flow is laminar. Use Blasius solution Determine $\eta = y \sqrt{\frac{V_{\infty}}{vx}} \qquad (d)$ $\frac{\delta}{x} = \frac{5.2}{\sqrt{Re_x}} \qquad (4.46)$ (iii) Computations.

• Calculate η at each location, use Table 4.1 to find u/V_{∞} . Results:

location	<i>x</i> (m)	<i>y</i> (m)	η	u/V_{∞}	<i>u</i> (m/s)
0	0.150	0.002	2.581	0.766	3.064
1	0.151	0.002	2.573	0.765	3.06
2	0.150	0.003	3.872	0.945	3.78
3	0.149	0.002	2.59	0.768	3.072
4	0.150	0.001	1.291	0.422	1.688

• Use (4.46) to determine δ at x = 0.151 m and $Re_x = 37,726$ $\delta = \frac{5.2}{\sqrt{Re_x}} x = \frac{5.2}{\sqrt{37,726}} 0.151$ (m) = 0.004 m = 4 mm

Thus the insect is within the boundary layer

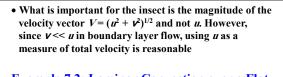
(iv) Checking. Dimensional check:

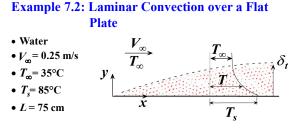
Equations (a) and (d) are dimensionally correct

Qualitative check: *u* at the five locations follow expected behavior

(5) Comments.

- The insect should move to location 4
- Changes in *u* with respect to *x* are minor
- Changes in *u* with respect to *y* are significant





- [a] Find equation for $\delta_t(x)$
- [b] Determine h at x = 7.5 cm and 75 cm
- [c] Determine q_T for a plate 50 cm wide
- [d] Can Pohlhausen's solution be used to q'' at the trailing end of the plate if its length is doubled?

(1) Observations

- External forced convection over a flat plate
- $\delta_t(x)$ increases with x
- Newton's law of cooling gives q'' and q_T
- h(x) decreases with x
- Pohlhausen's solution is applies laminar flow and all other assumptions made
- Doubling the length doubles the Reynolds number

(2) Problem Definition. Determine temperature distribution (3) Solution Plan

- Compute the Reynolds and Peclet numbers to establish if this is a laminar boundary layer problem
- Use Pohlhausen's solution to determine δ_t , h(x), q'' and q_T (4) Plan Execution
- (i) Assumptions. All assumptions leading to Blasius solution: These are:
 - Newtonian fluid
 - two-dimensional
 - negligible changes in kinetic and potential energy
 - constant properties
 - boundary layer flow

• steady state

- laminar flow
- no dissipation
- no gravity
- no energy generation
- flat plate
- negligible plate thickness
- uniform upstream velocity V_{∞}
- uniform upstream temperature $T\infty$
- uniform surface temperature *Ts*
- no radiation

(ii) Analysis and Computations • Are BL approximations valid? Calculate the Reynolds and Peclet. Condition: $Re_x > 100$ and $Pe = Re_x Pr > 100$ (a) $Re_x = \frac{V_{\infty}x}{v}$ Transition Reynolds number: Re_x $Re_x = 5 \times 10^5$ (b) Properties at T_f $T_f = (T_s + T_{\infty})/2$ (c) $T_s = 85^{\circ}C$ $T_{\infty} = 35^{\circ}C$ $T_f = (85+35)(^{\circ}C)/2 = 60^{\circ}C$

$$k = 0.6507 \text{ W/m-}^{\circ}\text{C}$$

$$Pr = 3.0$$

$$v = 0.4748 \times 10^{-6} \text{ m}^2/\text{s.}$$
at $x = 7.5 \text{ cm } Re_x$ and Pe are
$$Re_x = \frac{V_{\infty} x}{v} = \frac{0.25(\text{m/s})0.075(\text{m})}{0.4748 \times 10^{-6} (\text{m}^2/\text{s})} = 3.949 \times 10^4$$

$$Pe = Re_x Pr = 3.949 \times 10^4 \times 3 = 11.85 \times 10^4$$

$$\therefore \text{ BL approximations are valid, flow is laminar}$$

$$Pohlhausen's solution is applicable.$$
[a] Determine δ_t : At $y = \delta_t$, $T \approx T_{\infty}$

$$\theta(\eta_t) = \frac{(T_{\infty} - T_s)}{(T_{\infty} - T_s)} \approx 1$$

From Fig. 4.6: Value of
$$\eta_{tat} \ \theta(\eta_t) = 1$$
 and $Pr = 3$ at is
approximately 2.9
 $\eta_t \approx 2.9 = \delta_t \sqrt{V_{\infty}/vx}$
or
 $\frac{\eta_t}{x} = \frac{2.9}{\sqrt{V_{\infty}/vx}} = \frac{2.9}{\sqrt{Re_x}}$ (d)
[b] Heat transfer coefficient:
 $h(x) = k \sqrt{\frac{V_{\infty}}{vx}} \frac{d\theta(0)}{d\eta}$ (4.66)
 $\frac{d\theta(0)}{d\eta}$:
 $\frac{d\theta(0)}{d\eta} = 0.332 Pr^{1/3}$, $0.6 < Pr < 10$ (4.71b)

$$Pr = 3$$

$$\frac{d\theta(0)}{d\eta} = 0.332(3)^{1/3} = 0.4788$$
Substituting into (4.66) for $x = 0.075$ m
$$h = 825.5 \frac{W}{m^2 - {}^{0}C}$$
At $x = 0.75$ m
$$h = 261 \frac{W}{m^2 - {}^{0}C}$$
[c] Heat transfer rate:
$$q_T = (T_{s_1} - T_{\infty}) A \overline{h} \qquad (4.70)$$

$$L = \text{length of plate} = 75 \text{ cm} = 0.75 \text{ m}$$

$$W = \text{ width of plate} = 50 \text{ cm} = 0.5 \text{ m}$$

$$\overline{h} = 2 \frac{k}{L} \sqrt{Re_L} \frac{d\theta(0)}{d\eta} \qquad (4.67)$$

$$Re_L = 3.949 \times 10^5. \quad \text{Substitute into the above}$$

$$\overline{h} = 522.1 \frac{W}{m^2 - {}^{\circ}C}$$
Substitute into (4.70)
$$q_T = 9789 \text{ W}$$
[d] Doubling the length of plate:

$$Re_{2L} = 2 (3.949 \times 10^5) = 7.898 \times 10^5$$

$$\therefore Re_{2L} > Re_t$$
Flow is turbulent, Pohlhausen's solution is not applicable

(iii) Checking. Dimensional check: Reynolds number is dimensionless and that units of h and are h correct Qualitative check: As x is increased h decreases Quantitative check: Computed values of h are within the range of Table 1.1
(5) Comments
• Check Reynolds number before applying Pohlhausen's solution
• Velocity boundary layer thickness δ is given by
δ = 5.2

$$\frac{\partial}{x} = \frac{3.2}{\sqrt{Re_x}} \tag{4.46}$$

80

Compare (d) with equation (4.46): $\delta_t < \delta$

Example 7.3: Scaling Estimate of Heat Transfer Rate

Use scaling to determine the total heat transfer rate for conditions described in Example 7.2

(1) Observation

- •Newton's law gives heat transfer rate
- The heat transfer coefficient can be estimated using scaling

(2) Problem Definition.

Determine the heat transfer coefficient h

(3) Solution Plan.

Apply Newton's law of cooling and use scaling to determine h

(4) Plan Execution

(i) Assumptions

- Newtonian fluid
- two-dimensional
- negligible changes in kinetic and potential energy
- constant properties
- boundary layer flow
- steady state
- no dissipation
- no gravity
- no energy generation
- no radiation

(ii) Analysis. Application of Newton's law of cooling gives

 $q_T = (T_{s_s} - T_\infty) A \overline{h}$

(4.70)

$$A = \text{surface area} = LW, \text{ m}^{2}$$

$$\overline{h} = \text{average heat transfer coefficient, W/m^{2}-°C}$$

$$L = \text{length of plate} = 75 \text{ cm} = 0.75 \text{ m}$$

$$q_{T} = \text{total heat transfer rate from plate, W}$$

$$T_{s} = \text{surface temperature} = 85°C$$

$$T_{\infty} = \text{free stream temperature} = 35°C$$

$$W = \text{width of plate} = 50 \text{ cm} = 0.5 \text{ m}$$

$$h \text{ by (1.10)}$$

$$h = -k \frac{\frac{\partial T(x,0)}{\partial y}}{T_{s} - T_{\infty}}$$
(1.10)

k = thermal conductivity = 0.6507 W/m-°C

Follow analysis of Section 4.41, scale of *h* for $Pr \gg 1$ $h \sim \frac{k}{x} Pr^{1/3} \sqrt{Re_x}$, for $Pr \gg 1$ (4.56) $Re_x = \frac{V_{\infty}x}{v}$ and Pr = 3Set $h \sim \overline{h}$, x = L, A = WL and substitute (4.56) into (4.70) $q_T \sim (T_s - T_{\infty})W k Pr^{1/3} \sqrt{Re_L}$ (a) (iii) Computations $Re_L = 3.949 \times 10^5$ Substitute into (a) $q_T \sim (85 - 35)(^{\circ}C) 0.5(m) 0.6507(W/m^{-0}C) 3^{1/3} \sqrt{394900}$

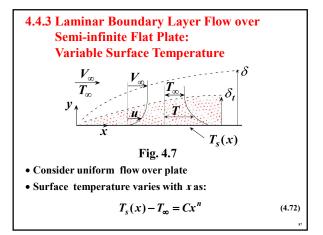
 $q_T \sim 14740 \text{ W}$

Using Pohlhausen's solution gives $q_T = 9789$ W (iv) Checking.

Dimensional Check: Solution (a) is dimensionally correct

(5) Comments.

Scaling gives an order of magnitude estimate of the heat transfer coefficient. In this example the error using scaling rate is 50%



• C and *n*, constants

- T_{∞} is free stream temperature
- Determine T(x, y), h(x), Nu_x and q_T
- Assumptions: summarized in Section 4.3

(i) Velocity Distribution

- For constant properties velocity is independent of the temperature distribution
- Blasius solution is applicable:

$$\frac{u}{V_{\infty}} = \frac{df}{d\eta}$$
(4.42)

$$\frac{\nu}{V_{\infty}} = \frac{1}{2} \sqrt{\frac{\nu}{V_{\infty} x}} \left(\eta \frac{df}{d\eta} - f \right)$$
(4.43)

$$\eta(x,y) = y_{\sqrt{\frac{V_{\infty}}{V x}}}$$
(4.41)

(ii) Governing Equations for Temperature Distribution Based on assumptions OF Section 4.3:

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}$$
(4.18)

Boundary condition

$$T(x,0) = T_s = T_{\infty} + Cx^n \tag{4.73a}$$

$$T(x,\infty) = T_{\infty} \tag{4.73b}$$

$$T(0, y) = T_{\infty} \tag{4.73c}$$

(iii) Solution	
• Solution to (4.18) is by similarity transformation	
Define : θ $\theta = \frac{T - T_s}{T_{\infty} - T_s}$	(4.58)
Assume $\theta(x, y) = \theta(\eta)$	(4.75)
Use (4.41)-(4.43), (4.58), (4.72), (4.75), energy (4.18) transforms to (Appendix C)	
$\frac{d^2\theta}{d\eta^2} + nPr\frac{df}{d\eta}(1-\theta) + \frac{Pr}{2}f(\eta)\frac{d\theta}{d\eta} = 0$	(4.76)
B.C. (4.73): $\theta(\infty) = 1$	(4.76a)
$\theta(0) = 0$	(4.76b)
$\theta(\infty) = 1$	(4.76c) ⁹⁰

• Note: Two B.C. coalesce into one Heat transfer coefficient and Nusselt number: Use (1.10) $h = -k \frac{\frac{\partial T(x,0)}{\partial y}}{T_s - T_{\infty}}$ (1.10) where $\frac{\partial T(x,0)}{\partial y} = \frac{dT}{d\theta} \frac{d\theta(0)}{d\eta} \frac{\partial \eta}{\partial y}$ Use (4.41),(4.58) and (4.72) into the above $\frac{\partial T(x,0)}{\partial y} = -Cx^n \sqrt{\frac{V_{\infty}}{v x}} \frac{d\theta(0)}{d\eta}$

$$h(x) = k \sqrt{\frac{V_{\infty}}{v x}} \frac{d\theta(0)}{d\eta}$$
(4.78)
• Average heat transfer coefficient: Use (2.50)

$$\overline{h} = \frac{1}{L} \int_{0}^{L} h(x) dx$$
(2.50)
Substitute (4.78) into (2.50) and integrate

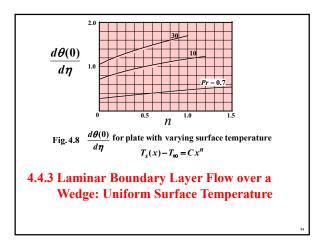
$$\overline{h} = 2 \frac{k}{L} \sqrt{Re_{L}} \frac{d\theta(0)}{d\eta}$$
(4.79)
• Local Nusselt number: (4.78) into (4.54)

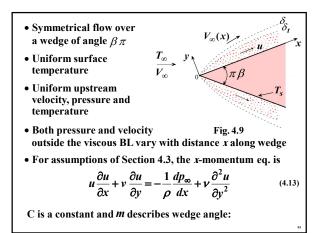
$$Nu_x = \frac{d\theta(0)}{d\eta} \sqrt{Re_x} \tag{4.80}$$

Substitute into (1.10)

$$\overline{Nu_L} = 2 \frac{d\theta(0)}{d\eta} \sqrt{Re_L}$$
(4.81)
Heat transfer coefficient and Nusselt number
depend on surface temperature gradient $\frac{d\theta(0)}{d\eta}$
(ii) Results:
• Equation (4.76) subject to boundary conditions (4.77) is
solved numerically

• Solution depends on two parameters: the Prandtl number *Pr* and the exponent *n* in (4.72) $d\theta(0)/d\eta$ is presented in Fig. 4.8 for three Prandtl numbers.





$$m = \frac{\beta}{2 - \beta}$$
(4.83)
• Apply (4.13) at edge of BL to determine $\frac{dp_{\infty}}{dx}$:
• Flow is inviscid
• $v = v = 0$
• $u = V_{\infty}(x)$
 $-\frac{1}{\rho} \frac{dp_{\infty}}{dx} = V_{\infty} \frac{\partial V_{\infty}}{\partial x}$
Substitute into (4.13)
 $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = V_{\infty} \frac{\partial V_{\infty}}{\partial x} + v \frac{\partial^2 u}{\partial y^2}$ (4.84)

The B.C. are

$$u(x,\infty) = V_{\infty}(x) = Cx^{m}$$
 (4.84a)
 $u(x,0) = 0$ (4.84b)
 $v(x,0) = 0$ (4.84c)
(i) Velocity Solution:

- By similarity transformation (follow Blasius approach)
- Define a similarity variable η :

.

$$\eta(x,y) = y_{\sqrt{\frac{V_{\infty}(x)}{v \, x}}} = y_{\sqrt{\frac{C}{v}}} \, x^{(m-1)/2} \tag{4.86}$$

Assume
$$u(x, y)$$
 to depend on η :

$$\frac{u}{V_{\infty}(x)} = \frac{dF}{d\eta}$$
(4.87)

Continuity (2.2), (4.86) and (4.87) give v

$$v = -V_{\infty}(x)\sqrt{\frac{v}{xV_{\infty}(x)}} \frac{m+1}{2} \left[F - \frac{1-m}{1+m} \eta \frac{dF}{d\eta} \right]$$
 (4.88)
Substitute (4.82) and (4.86)-(4.88) into (4.84)
 $\frac{d^3F}{d\eta^3} + \frac{m+1}{2} F \frac{d^2F}{d\eta^2} - m \left[\frac{dF}{d\eta} \right]^2 + m = 0$ (4.89)
This is the transformed momentum equation B. C. (4.85)
transform to
 $\frac{dF(0)}{d\eta} = 0$ (4.89a)
 $F(0) = 0$ (4.89b)
 $\frac{dF(\infty)}{d\eta} = 1$ (4.89c)

Note the following regarding (4.89) and (4.90): • x and y do not appear

- Momentum eq. (4.89) is 3rd order non-linear
- Special case: $m = \beta = 0$ represents a flat plate
- Setting m = 0 in (4.89) and (4.90) reduces to Blasius problem (4.44) & (4.45), $F(\eta) = f(\eta)$
- (4.89) is integrated numerically
- Solution gives $F(\eta)$ and $dF/d\eta$. These give u and v

(ii) Temperature Solution: Energy equation:

$$u\frac{\partial\theta}{\partial x} + v\frac{\partial\theta}{\partial y} = \alpha\frac{\partial^2\theta}{\partial y^2}$$
(4.59)

Boundary condition	s:	
·	$\theta(x,0) = 0$	(4.60a)
	$\theta(x,0) = 1$	(4.60b)
	$\theta(x,0) = 1$	(4.60c)
where		
	$\theta = \frac{T - T_s}{T_s - T_s}$	(4.58)

$$=\frac{T-T_s}{T_{\infty}-T_s} \tag{4.58}$$

- Same energy equation and B.C. as the flat plate.
- Is temperature distribution the same?
- Equation (4.59) is solved by similarity transformation. Assume:

$$\boldsymbol{\theta}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\theta}(\boldsymbol{\eta}) \tag{4.75}$$

$$\eta(x, y) = y \sqrt{\frac{V_{\infty}(x)}{v x}} = y \sqrt{\frac{C}{v}} x^{(m-1)/2}$$
(4.86)
Substitute (4.86)-(4.88) and (4.75) into (4.59) and (4.60)
$$\frac{d^2\theta}{d\eta^2} + \frac{Pr}{2}(m+1)F(\eta)\frac{d\theta}{d\eta} = 0$$
(4.91)
$$\theta(0) = 0$$
(4.92a)
$$\theta(\infty) = 1$$
(4.92b)
$$\theta(\infty) = 1$$
(4.92c)
• Partial differential equations is transformed into ordinary equation
• Two governing parameters: Prandtl number *Pr* and the wedge size *m*

- (491) a linear second order equation requiring two B.C.
- $F(\eta)$ in (4.91) represents effect of fluid motion
- B.C. (4.60b) and (4.60c) coalesce into a single condition
- Special case: $m = \beta = 0$ represents flat plate. Set m = 0in (4.91) reduces to Pohlhausen's problem (4.61)

Solution: (Details in Appendix B)

- Separate variables in (4.91)
- Integrate twice
- Applying B.C. (4.92), gives

$$\theta(\eta) = 1 - \frac{\int_{\eta}^{\infty} \exp\left[-\frac{(m+1)P_{f}}{2}\int_{0}^{\eta}F(\eta)d\eta\right] d\eta}{\int_{0}^{\infty} \exp\left[-\frac{(m+1)P_{f}}{2}\int_{0}^{\eta}F(\eta)d\eta\right] d\eta}$$
(4.93)

Temperature gradient at surface
$$\frac{d\theta(0)}{d\eta}$$
:
• Differentiate (4.93), evaluate at $\eta = 0$
 $\frac{d\theta(0)}{d\eta} = \left\{ \int_0^\infty \exp\left[-\frac{(m+1)Pr}{2}\int_0^\eta F(\eta)d\eta\right] d\eta \right\}^{-1}$ (4.94)
• $F(\eta)$ is given in the velocity solution
• Evaluate integrals in (4.93)&(4.94) numerically
• Results for $\frac{d\theta(0)}{d\eta}$ and $F''(0)$ are in Table 4.3

veloc	Table 4.3 Surface temperature gradient $\frac{d\theta(0)}{d\eta}$ and velocity gradient $F''(0)$ for flow over an isothermal wedge									
m	wedge angle .πβ	F"(0)	d	9(0)/da	7 at five	values of	Pr			
ш	.πβ		.πβ	1 (0)	0.7	0.8	1.0	5.0	10.0	
0	0	0.3206	0.292	0.307	0.332	0.585	0.73			
0.111	π / 5 (36°)	0.5120	0.331	0.348	0.378	0.669	0.85			
0.333	$\pi/2$ (90°)	0.7575	0.384	0.403	0.440	0.792	1.01			
1.0	π (180°)	1.2326	0.496	0.523	0.570	1.043	1.34			

$$h = -k \frac{\frac{\partial T(x,0)}{\partial y}}{T_s - T_{\infty}}$$
(1.10)
where

$$\frac{\partial T(x,0)}{\partial y} = \frac{dT}{d\theta} \frac{d\theta(0)}{d\eta} \frac{\partial \eta}{\partial y}$$
Use (4.58),(4.75) and (4.86) into above

$$\frac{\partial T(x,0)}{\partial y} = (T_{\infty} - T_s) \sqrt{\frac{V_{\infty}(x)}{v x}} \frac{d\theta(0)}{d\eta}$$
Substitute into (1.10)

$$h(x) = k \sqrt{\frac{V_{\infty}(x)}{v x}} \frac{d\theta(0)}{d\eta}$$
(4.95)
Local Nusselt number: substitute (4.95) into (4.54)

$$Nu_{x} = \frac{d\theta(0)}{d\eta} \sqrt{Re_{x}}$$
(4.96)
where
$$Re_{x} = \frac{xV_{\infty}(x)}{v}$$
(4.97)
• Key factor in determining $h(x)$ and Nu_{x} :
Surface temperature gradient is $\frac{d\theta(0)}{d\eta}$, listed in Table 4.3.

•

