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CHAPTER  8

CONVECTION IN EXTERNAL TURBULENT FLOW

8.1 Introduction

 Common physical phenomenon, but complex

Still relies on empirical data and rudimentary conceptual drawings
 Tremendous growth in research over last 30 years
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8.1.1 Examples of Turbulent Flows

(i) Mixing Processes

(ii) Free Shear Flows

(iii) Wall-Bounded Flows

 Varying shape of instantaneous velocity profile

 Instantaneous velocity fluctuation
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Turbulent velocity profile vs. laminar

 Time averaged
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Turbulent flows can enhance performance

 Turbulators 

 Dimpled golf balls 
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8.1.2 The Reynolds Number and the Onset of Turbulence

 Osborne Reynolds (1883) first identifies laminar and turbulent regimes 

 Reynolds number:

D

uD
Re


 (8.1)

 Internal flow: critical flow number is / 2300cRe uD  
 Flow over semi-infinite flat plate is / 500,000c tRe V x  

Why the Reynolds number predicts the onset of turbulence

 Reynolds number represents the ratio of inertial to viscous forces

o Inertial forces accelerate a fluid particle
o Viscous forces slow or damp the motion of the particle

 At low velocity, viscous forces dominate
o Infinitesimal disturbances damped out

o Flow remains laminar

5

 At high enough fluid velocity, inertial forces dominate

o Viscous forces cannot prevent a wayward particle from motion
o Chaotic flow ensues

Turbulence near wall
 For wall-bounded flows, turbulence initiates near the wall

6

8.1.3 Eddies and Vorticity

 An eddy is a particle of vorticity, ω, 

V  


(8.2)

 Eddies typically form in regions of velocity gradient. 

 Vorticity can be found from Eqn. (8.2) to be 

z

v u

x y
  

 
 

A Common View of Eddy Formation

 Eddy begins as a disturbance near the wall

 Vortex filament forms

 Stretched into horseshoe or hairpin vortex

 Lifting phenomenon
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8.1.4 Scales of Turbulence

 Largest eddies break up due to inertial forces 

 Smallest eddies dissipate due to viscous forces 

 Richardson Energy Cascade (1922)

9

Kolgomorov Microscales (1942)

 Attempt to estimate size of smallest eddies
3/4/ l Re  (8.3a)
1/4/v u Re (8.3b)

1/2/ t Re  (8.3c)

 Important impacts:
o There is a vast range of eddy sizes, velocities, and time scales 

in a turbulent flow.  This could make modeling difficult.

o The smallest eddies small, but not infinitesimally small. 
Viscosity dissipates them into heat before they can become 
too small.

o Scale of the smallest eddies are determined by the scale of    
the largest eddies through the Reynolds number.  
Generating smaller eddies is how the viscous dissipation is 
increased to compensate for the increased production of 
turbulence.
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8.1.5 Characteristics of Turbulence
 Turbulence is comprised of irregular, chaotic, three-dimensional 

fluid motion, but containing coherent structures.

 Turbulence occurs at high Reynolds numbers, where instabilities 
give way to chaotic motion.

 Turbulence is comprised of many scales of eddies, which dissipate 
energy and momentum through a series of scale ranges.  The largest 
eddies contain the bulk of the kinetic energy, and break up by inertial 
forces.  The smallest eddies contain the bulk of the vorticity, and 
dissipate by viscosity into heat. 

 Turbulent flows are not only dissipative, but also dispersive through 
the advection mechanism.

8.1.6 Analytical Approaches

 Considering small eddies, is continuum hypothesis still valid?

o The smallest eddies: approximately 52 10  m

11

o Mean free path of air at atmospheric pressure is on the order 
of                three orders of magnitude smaller810  m

o Continuum hypothesis OK

 Are numerical simulations possible?

o Direct Numerical Simulation (DNS) a widespread topic of 
research

o However, short time scales and size range of turbulence a 
problem

o Still have to rely on more traditional analytical techniques

Two Common Idealizations

 Homogeneous Turbulence: Turbulence, whose microscale motion, 
on average, does not change from location to location and time to time.

 Isotropic Turbulence: Turbulence, whose microscale motion, 
on average, does not change as the coordinate axes are rotated.

12

8.2 Conservation Equations for Turbulent Flow

8.2.1 Reynolds Decomposition

 Turbulent flow seems well-behaved on average.

 Reynolds Decomposition: Separate velocity, properties into time-
averaged and fluctuating components:

g g g  (8.4)

 Time-averaged component is determined by:

0

1
( )g g t dt




  (8.5)

 Time average of fluctuating component is zero:

0

1
( ) 0g g t dt




   (8.6)
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Average Identities:

 For two variables                  and a a a  b b b 

a a (8.7a) ab ab (8.7b)

   2 2
a a (8.7c) 0aa  (8.7d)

ab ab a b   (8.7e)    2 22a a a  (8.7f)

a b a b   (8.7g)
a a

x x

 


 
(8.7h)

0
a

t





(8.7i) 0

a

t





(8.7j)

8.2.2 Conservation of Mass

14

 By identities (8.7a) and (8.6):

 Expanding,

     
0

u v w

t x y z

     
   

   
(2.2a)

 Assume incompressible, two-dimensional flow. Substituting the 
Reynolds-decomposed velocities                   and                ,u u u  v v v 

   
0

u u v v

x y

    
 

 
(a)

0
u u v v

x x y y

    
   

   
(b)

 Time-average the equation:

0
u u v v

x x y y

    
   

   
(c)

 Then, simplify each term by invoking identity (8.7h):

15

 By identities (8.7a) and (8.6),

2 2 2

2 2 2x

u u u u p u u u
u v w g

t x y z x x y z
  

         
                   

(2.10x)

 The x and y momentum equations are given by:

0
u u v v

x x y y

    
   

   
(d)

0
u v

x y

 
 

 
(8.8)

8.2.3 Conservation of Momentums

2 2 2

2 2 2y

v v v v p v v v
u v w g

t x y z y x y z
  

         
                   

(2.10y)
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 Simplifying for steady, 2D flow, no body forces:

2 2

2 2

u u u p u u
u v

t x y x x y
 

       
               

(8.10x)

2 2

2 2

v v v p v v
u v

t x y y x y
 

       
               

(8.10y)

 For the x-momentum equation, the terms                                              can 
be replaced by the following relations, derived from the product rule of 
derivation:

( / ) and ( / )u u x v u y   

2u u u
u u

x x x

  
 

  
(a)

( )u uv v
v u

y y y

  
 

   (b)

 Substitute (a) into the x-momentum equation (8.10x):

 

2 2 2

2 2

( )

a b

u u u uv v p u u
u u

t x x y y x x y
 

 
          

                  
 

(c)

17

0  by continuity
u v

u
x y

  
     

(d)

 Thus, the x-momentum equation reduces to:

 Note that terms marked       and       in the above can be combined as: 

2 2 2

2 2

( )u u uv p u u

t x y x x y
 
        

                
(8.11)

 Following Reynolds decomposition and averaging,
2 2 2

2 2

( )u u p u u u u v
u v

x y x x y x y
   

          
                 

(8.12x)

2 2 2

2 2

( )v v p v v u v v
u v

x y y x y x y
   

          
                 

(8.12y)

8.2.4 Conservation of Energy

18

2 2 2

2 2 2p

T T T T T T T
c u v w k

t x y z x y z
 

        
                  

(2.19b)

 For incompressible flow, negligible heat generation, constant properties,
the energy equation is given by

 The energy equation reduces to:

2 2

2 2p

T T T T T
c u v k

t x y x y


      
            

(8.13)

 Following Reynolds decomposition and time averaging, Eqn. (8.13) 
becomes:

   2 2

2 2p p p

u T v TT T T T
c u v k c c

x y x y x y
  

         
              

(8.14)
 NOTE TWO NEW TERMS
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 Continuity:

0
u v

x y

 
 

  (8.8)

8.2.5 Summary of Governing Equations for Turbulent Flow

 x-momentum:

2 2 2

2 2

( )u u p u u u u v
u v

x y x x y x y
   

          
                 

(8.12x)

2 2 2

2 2

( )v v p v v u v v
u v

x y y x y x y
   

          
                 

(8.12y)

 y-momentum:

   2 2

2 2p p p

u T v TT T T T
c u v k c c

x y x y x y
  

         
              

(8.14)

 Energy:

20

8.3 Analysis of External Turbulent Flow

8.3.1 Turbulent Boundary Layer Equations

 Consider a flat plate in turbulent flow.

 Assume boundary layer is thin:

1
L


 (8.15)

 Following the same arguments as for the laminar boundary layer, the
following scalar arguments are made:

(i) Turbulent Momentum Boundary Layer Equation

u V (8.16a)

x L (8.16b)

y  (8.16c)

21

 It can be shown that the viscous dissipation terms in (8.12x) compare 
as follows:

2 2

2 2

u u

x y

 
 

 (8.17)

 Also, the pressure gradient in the y-direction is negligible:

 2

 and 
u u v

x y

  
 

0
p

y




 (8.18)

 The pressure gradient in the x-direction can be expressed as:
dpp dp

x dx dx


 


(8.19)

Simplifying the Fluctuation Terms:

 Fluctuation Terms:

 If fluctuation terms are the result of eddies, one could argue that 
there is no preferred direction to the fluctuations:
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u v  (8.20)

 Using scale analysis:

/ 1L  Since                  , we conclude that:

 The x-momentum equation for the turbulent boundary layer reduces to:

or

 2
u u v   (8.21)

   2 2
u u

x L

 


 (a)First Fluctuation Term:

 2
uu v u v

y  
   


  (b)Second Fluctuation Term:

 2
u u v

x y

  
 

 (8.22)

23

2

2

u u dp u u v
u v

x y dx y y
  

     
         

(8.20)

 Scaling arguments for the thermal boundary is:

 Then:

 Fluctuation terms:

2 2

2 2

T T

x y

 
 

 (8.26)

(ii) Turbulent Energy Equation

ty  (8.24)

x L (8.16b)

sT T T  (8.25)

   
 and p p

u T v T
c c

x y
 

    

 

 Assuming there is no preferred direction to the fluctuations:
u v  (8.20)

24

 We can then show that:

or

u T v T    (8.27)

   u T v T

x y

    
 

 (8.28)

 The energy equation then reduces to:

 2

2p p

v TT T T
c u v k c

x y y y
 

    
       

(8.29)

8.3.2 Reynolds Stress and Heat Flux

 Can write the x-momentum and energy boundary layer equations as:

p p

T T T
c u v k c v T

x y y y
 

                   
(8.31)

u u dp u
u v u v

x y dx y y
  
                     

(8.30)
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 Fluctuating term in (8.30) “looks” like a shear stress

 Consider a particle “fluctuation” imposed on some average velocity profile

 Fluctuating term in (8.31) “looks” like a heat flux

u v   is called the turbulent shear stress or the Reynolds stress

pc v T   is called the turbulent heat flux or the Reynolds heat flux

8.3.3 The Closure Problem of Turbulence
 Turbulent boundary layer equations:

0
u v

x y

 
 

  (8.8) Continuity:

26

 Energy: p p

T T T
c u v k c v T

x y y y
 

                   
(8.31)

u u dp u
u v u v

x y dx y y
  
                     

(8.30) x-momentum:

 Boundary conditions:
( ,0) 0u x  (8.31a)
( ,0) 0v x  (8.31b)

( , )u x V  (8.31c)
(0, )u y V (8.31d)
( , 0) sT x T (8.31e)
( , )T x T  (8.31f)
(0, )T y T (8.31g)

 Also have, outside the boundary layer:
dpdp

dx dx
 (8.32)

1dV dp
V

dx dx
 

   (8.33)

27

 Leaves us with three equations (8.8), (8.30) and (8.31), but five unknowns:

,  , ,  and u v T u v v T   

M

u
u v

y
 

  
 (8.34)

 This is the closure problem of turbulence.

8.3.4 Eddy Diffusivity 

 Customary to model the Reynolds stress as 

 is called the momentum eddy diffusivity.M is often referred to as 
eddy viscosity.

M

p p H

T
c v T c

y
  

  
 (8.35)

 Similarly, we can model the Reynolds heat flux as 

 is called the thermal eddy diffusivity.H is often referred to as 
eddy conductivity.

p Hc 

 We can then write the boundary layer momentum and energy equations as
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 M

u u u
u v

x y y y
 

    
       

(8.38)

 The terms in brackets represent the apparent shear stress and apparent
heat flux, respectively: 

 H

T T T
u v

x y y y
 

    
       

(8.39)

 app
M

u

y


 




 
 (8.40)

 app
H

p

q T

c y
 



 
  

 (8.41)

8.4 Momentum Transfer in External Turbulent Flow
8.4.1 Modeling Eddy Diffusivity: Prandtl’s Mixing Length Theory 

 Simplest model by Boussinesq: constant M
o does not allow        to approach zero at the wall u v 

29

 Prandtl (1925): used analogy to kinetic theory of gases

 Define the mixing length l as the distance the particle travels towards the
wall as the result of a fluctuation.

 The velocity fluctuation       that results can be approximated from a 
Taylor series as 

u

final initialu u u   (a)

 Thus,

initial

u
u u dy

y

  
 (a)

u
u l

y




 (b)

30

 Finally, we can solve Equation (8.34), for the eddy viscosity:

 If we assume, as we have before, that fluctuations have no preferred
direction, then             , and sou v 

 Prandtl proposed the following model for the mixing length,

l y (8.43)

u
v l

y




 (c)

 One could argue, then, that the turbulent stress term              is of the   
following scale:

u v 

   
2

2 u
u v u v l

y

       
  (d)

2

/M

u v u
l

u y y


  

  

 (8.42)

 Leading to Prandtl’s mixing-length model:

2 2
M

u
y

y
 




 (8.44)
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 One way to solve momentum is to assume a velocity profile, then use 
approximate methods to solve integral momentum (like in Chap. 5)

8.4.2 Universal Turbulent Velocity Profile

(i) Large-Scale Velocity Distribution: “Velocity Defect Law”

 Doesn’t collapse curves with varying friction

 First Step: normalize variables:              vs. /u V /y 

Velocity Defect Law 

 Introduce coefficient of friction:

  21 / 2
o

fC
V


 

 (8.45)

 Second, define a friction velocity as:

* /ou   (8.46)

* / 2fu V C (8.47)

32

 Define velocity defect:

(ii) Wall Coordinates

 This works, but doesn’t provide
enough detail near the wall.

*

u V

u


(8.48)

*

u
u

u
  (8.49)

 Dimensional analysis suggests the 
following wall coordinates:

(iii) Near-Wall Profile: Couette Flow Assumption

 Very close to the wall, scaling analysis suggests:

  0M

u

y y
 

  
   

 (8.50)Near the Wall:

  constantapp
M

u

y


 




 


 (8.51)

33

 This result is similar to Couette flow: Couette Flow Assumption

 Resulting curve:
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 What do we do with this? We can use (8.51) to develop an expression for
the velocity profile.

(iv) Viscous Sublayer

 Very close to the wall, viscous forces dominate, M 

1 1M u

y








     
(8.52)

 First, we need to express (8.51) in terms of the wall coordinates 
and      . Substituting their definitions, it can be shown that:

u

y

 And after rearranging and integrating,

 0 1 /

y

M

dy
u

 




 
 (8.53)

 Couette Flow Assumption (8.52) reduces to:

1
u

y









 Integrating, with boundary condition               at0u  0y 

,   (0 7)u y y     (8.54)

35

(v) Fully Turbulent Region: “Law of the Wall”

 Substitute into Equation (8.55),

 Couette Flow Assumption (8.52) becomes

1M u

y












(8.55)

 This relation compares well to experimental data from
which we call the viscous sublayer. 

0 to 7y 

 Further away from the wall, turbulent fluctuations dominate, M 

 Substitute Prandtl’s mixing length, and wall coordinates:

 22
M

u
y

y
  










(8.56)

 
2

22 1
u

y
y







 
  

 Solve for the velocity gradient, 
1u

y y



 





(8.57)

36

 Thus, an approximation for the Law of the Wall region is:

 This is sometimes referred to as the Law of the Wall.

1
lnu y B


   (8.58)

 Finally, integrate the above to obtain 

 The constant κ is called von Karman’s constant, and experimental 
measurements show that κ ≈ 0.41.

2.44 ln 5.0         (50 1500)u y y      (8.59)

 The constant of integration B can be estimated by noting that the 
viscous sublayer and the Law of the Wall region appear to intersect at
roughly                              . Using this as a boundary condition, the 
integration constant is found to be β ≈ 5.0.

10.8y u  

(vi) Other Models
 van Driest’s continuous law of the wall

o van Driest proposed a mixing length model of this form:

 /1 y Al y e   (8.60)

o van Driest used this equation with (8.42) and (8.51) to obtain:
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 Spalding’s Law:

 22 2 /1app y A u
y e

y


 


       

(8.61)

 Transforming (8.61) into wall coordinates, and solving for
one can obtain: 

/y u  

o Works for flat plate and pipe flow

 2
2 2 /

2

1 1 1 y A

u

y
y e

 




 





  

(8.62)

   2 3

1
2 6

u
u u

y u e e u 
 




 
   

 
      
 
 

(8.63)

 Reichardt’s Law, applied frequently to pipe flow:

  / 0.331
ln 1 1 y X yy

u y C e e
X




 


    
     

 
(8.64)

(vii) Effect of Pressure Gradient

38

 In the presence of an adverse pressure gradient, the velocity profile
beyond                    deviates from the Law of the Wall model.  350y 
 The deviation is referred to as a “wake,” and the region                     is 

commonly referred to as the wake region, where the velocity profile 
deviates even from the overlap region.

350y 

 Law of the Wall-type models 
developed earlier model flat 
plate flow reasonably well in the 
presence of zero pressure 
gradient.

 A favorable pressure gradient 
is approximately what we 
encounter in pipe flow, which 
helps explain why the models 
developed here apply as well to 
pipe flow.

39

 The integral momentum equation reduces to equation (5.5),

 Consider a flat, impermeable plate exposed to incompressible,
zero-pressure-gradient flow

(i) Prandtl - von Karman Model

 Applies to turbulent flows as well – without modification – if we look at 
the behavior of the flow on average, and we interpret the flow properties 
as time-averaged values.

( ) ( )
2

0 0

( , 0) x xu x d d
V udy u dy

y dx dx

 

 


 

   (5.5)

8.4.3 Approximate Solution for Momentum Transfer: Momentum Integral
Method

Estimate of Velocity Profile 

 The integral method requires an estimate for the velocity profile  
in the boundary layer.

 Prandtl and von Kármán both used a crude but simple model 
for the velocity profile using prior knowledge about pipe flow.
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 This is the well-known 1/7th Law velocity profile, discussed 
further in Chapter 9.

 Using the Blasius model for the shear at the wall of a circular pipe,  
Prandtl [18] and von Kármán [16] each showed that the velocity 
profile in the pipe could be modeled as 

 Why base a velocity profile for flat plate on pipe flow?  The velocity data 
for pipe flow and flat plate flow (at zero or favorable pressure gradient) 
have essentially the same shape, so the use of this model to describe flow 
over a flat plate is not unreasonable.

1/7

CL o

u y

u r

 
  
 

 To apply the 1/7th law to flat plate, we approximate     as the edge of 
the boundary layer      , and approximate       as       . Then,

or
 VCLu

1/7
u y

V 

   
 

(8.65)

Model for Wall Shear 

 LHS of Integral Momentum is an expression for wall shear; uses 
assumed velocity profile.

41

 To avoid this dilemma, Prandtl and von Kármán again looked to 
pipe flow knowledge

 Problem: our assumed profile goes to infinity as y approaches zero.

 They adapted the Blasius correlation for pipe flow friction factor to find an
expression for the wall shear on a flat plate 

1/4

2
0.02333

2
f o

C V

V

 
 






    
 

(8.67)

Example 8.2: Integral Solution for Turbulent Boundary Layer 
Flow over a Flat Plate 

Consider turbulent flow over a flat plate, depicted in Fig. 8.8.  
Using the 1/7th law velocity profile (8.65) and the expression for 
friction factor (8.67), obtain expressions for the boundary layer 
thickness and friction factor along the plate.

 Recasting the Blasius correlation terms of the wall shear and the tube 
radius, they obtained

 This is used in the LHS of the momentum integral relation.

42

(1) Observations. The solution parallels that of Chapter 5 for laminar 
flow over a flat plate.
(2) Problem Definition. Determine expressions for the boundary layer 
thickness and friction factor as a function of x.

(3) Solution Plan. Start with the integral Energy Equation (5.5), 
substitute the power law velocity profile (8.65) and friction factor 
(8.67), and solve.

(4) Plan Execution. 
(i) Assumptions. (1) Boundary layer simplifications hold, (2) 

constant properties, (3) incompressible flow, (4) impermeable flat plate.
(ii) Analysis. 

 Substitute 1/7th power law velocity profile into the Mom. Int. Equation:
1/7 2/7( ) ( )

2

0 0

x x

o d y d y
V V dy V dy

dx dx

 
    

       
     (a)

 Dividing the expression by        , and collecting terms,2V
1/7 2/7( )

2
0

x

o d y y
dy

V dx


  

         
     

 (b)
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 After integrating,

2

7

72
o d

V dx

 
 

 (8.68)

 Now substituting (a) into the wall shear expression (8.67),
1/4

7
0.02333

72

V d

dx

 



   

 
(c)

 Then, separating variables and integrating,
1/4

5/44 72
0.02333

45 7

V
x C




     

  
(8.69)

 To complete the solution, a boundary condition is needed. 
 Can assume that          is zero at x = 0, which ignores the initial laminar 

boundary layer region
( )x

 However crude the 
assumption, we find that the 
results of this analysis 
compare well to experimental 
data. 

44

1/5

( ) 0.3816
V x

x x



   

 
(d)

 Finally, solve for the friction factor. Substituting (8.70) into (8.67),

 With the boundary condition established, the integration constant C
equals zero.  Then solving (8.69) for          ,( )x

Which reduces to

1/5

0.3816

xx Re


 (8.70)

or

1/41/5

0.3816
0.02333

2
f

V x
V x

C 







  
  

  
 
  
 

(e)

1/5

0.02968

2
f

x

C

Re
 (8.71)

(5) Checking. Equations (8.70) and (8.71) are both dimensionless, as 
expected.

45

 One limitation of the Prandtl-von Kármán model is that the 
approximation for the wall shear, Eqn. (8.66), is based on limited 
experimental data, and considered to be of limited applicability even for 
pipe flow.

 White [14] uses the Law of the Wall velocity profile (8.59) to model the 
wall shear.

fC

(6) Comments. Note that, according to this model, the turbulent 
boundary layer δ/x varies as           , as does the friction factor      . This 
is contrast to laminar flow, in which δ/x and       vary as            .

1/5
xRe 

1/2
xRe 

fC

(ii) Newer Models

White’s Model

 First, substituting the definitions of      and      , as well as     , into 
the Law of the Wall expression (8.59),

u y *u

1/4

2
2.44 ln 5.0

2
f

f

CyVu

V C 







 
  
 
 

 In theory, any y value within the wall law layer would satisfy this 
expression, but a useful value to choose is the edge of the boundary layer, 
where                       . Then, the above can be expressed as( )u y V  
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1
2.44 ln 5.0

2/ 2

f

f

C
Re

C


 
  
 
 

(8.72)

1/60.02fC Re
 (8.73)

 We can now use this expression to estimate the wall shear in the integral 
method. 

 Still a difficult relation to use, but a simpler curve fit over a range of 
values from                              gives

4 710  to 10Re 

 For the velocity profile, the 1/7th power law is still used. 

 It can be shown that the solution to the momentum integral equation in 
this case becomes

1/7

0.16

x Re


 (8.74)

1/7

0.0135

2
fC

Re
 (8.75)

and

 Equations (8.74) and (8.75) replace the less accurate Prandtl-von 
Kármán correlations, and White recommends these expressions for 
general use.

47

Kestin and Persen’s Model 

 Perhaps a more accurate correlation would result if we use one 
of the more advanced velocity profiles to estimate the wall shear, 
as well as to replace the crude 1/7th power law profile. 

 The total drag is found by integrating the wall shear along the 
entire plate.  Assuming the presence of an initial laminar flow region,

 Kestin and Persen used Spalding’s law of the wall for the 
velocity profile and shear stress. 

 The resulting model is extremely accurate, but cumbersome. 
White [20] modified the result to obtain the simpler relation

 2

0.455

ln 0.06f
x

C
Re

 (8.76)

 White reports that this expression is accurate to within 1% of Kestin 
and Persen’s model.

(iii) Total Drag

   
0

crit

crit

x L

D o olam turb
x

F wdx wdx    (8.76)

48

, ,
0

1 crit

crit

x L

D f lam f turb
x

C C dx C dx
L

 
  

  
  (8.78)

 Substituting Eqn. (4.48) for laminar flow and using White’s model 
(8.75) for turbulent flow, we obtain with some manipulation,

 Dividing by                                        , the drag coefficient        is:2 21 1

2 2
V A V wL   DC

1/7

0.0315 1477
D

L L

C
Re Re

  (8.79)

 Assume                                        55 10critx  
8.4.4 Effect of Surface Roughness on Friction Factor

 The interaction between the already complex turbulent flow and the 
complex, random geometric features of a rough wall is the subject of 
advanced study and numerical modeling. 

 However, with crude modeling and some experimental study we can 
gain at least some physical insight.

 Define k as the average height of roughness elements on the surface.  
In wall coordinates: * /k ku  
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 Experiments show that for small values of       (less than approximately 
5), the velocity profile and friction factor are unaffected by roughness

k 

 For                or so, however, the roughness extends beyond the viscous 
sublayer, and the viscous sublayer begins to disappear, likely due to
the enhanced mixing in the roughness provided.

10k  

 Beyond                viscous effects are virtually eliminated, and the flow 
is referred to as fully rough.  Beyond this value of roughness, the shape 
of the velocity profile changes very little. Consequently, we might expect 
that once the surface is fully rough, increasing the roughness would not 
change the friction factor.

70k  

50

8.5 Energy Transfer in External Turbulent Flow

 Not surprisingly, energy transfer is also greatly complicated under 
turbulent flow.

 We found in Chapter 2 that the heat transfer for flow over a 
geometrically similar body like a flat plate (neglecting both buoyancy 
and viscous dissipation) could be correlated through dimensionless 
analysis by

*( , , )xNu f x Re Pr (2.52)

M
t

H

Pr



 (8.81)

 Turbulence introduces two new variables into the analysis: the 
momentum and thermal eddy diffusivities,                    . and M H 

 One way to deal with these new terms is to introduce a new 
dimensionless parameter: Turbulent Prandtl Number

Approaches to Analyzing Turbulent Heat Transfer 
 Find a mathematical analogy between heat and mass transfer

 Develop a universal temperature profile, similar to how we 
developed a universal velocity profile.

51

o Then attempt to obtain an approximate solution for heat transfer
using the integral method

 The universal temperature profile may also lend itself to a simple algebraic
method for evaluating the heat transfer. 

There are more advanced methods, like numerical solutions to the 
boundary layer flow, which we will forgo in this text. We will instead 
remain focused on some of the more traditional methods, which are the 
basis of the correlations commonly in use.

 Osborne Reynolds first discovered a link between momentum and
heat transfer in 1874 while studying boilers.

8.5.1 Momentum and Heat Transfer Analogies

 He theorized that the heat transfer and the frictional resistance in a pipe 
are proportional to each other.

 This is a significant and bold assertion!  If we can measure or predict the 
friction along a wall or pipe, we can determine the heat transfer simply 
by using a multiplying factor.  This approach would allow us to solve 
for the heat transfer directly, avoiding the difficulty of solving the energy 
equation.
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 Consider parallel flow over a flat plate.

 Notice that equations (8.82a&b) and their respective boundary 
conditions are very similar; if they were identical, their solutions –
the velocity and temperature profiles – would be the same.

 The pressure gradient dp/dx is zero, and the boundary layer momentum 
and energy equations (8.38) and (8.39) reduce to 

 The boundary conditions are

(i) Reynolds Analogy

 M

u u u
u v

x y y y
 

    
       

(8.82a)

 H

T T T
u v

x y y y
 

    
       

(8.82b)

( 0) 0,  ( 0) su y T y T    (8.83a)
( ) ,  ( )u y V T y T      (8.83b)

Normalizing the Variables 

 Select the following variables,

53

 With boundary conditions:

 The boundary layer equations become

,  ,  ,   and s

s

T Tu v x y
U V X Y

V V T T L L


  


    



 1
HU V

X Y V L y Y

  
 



           
(8.84b)

( 0) 0,  ( 0) 0U Y Y    (8.85a)
( ) 1,  ( ) 1U Y Y      (8.85b)

 1
M

U U U
U V

X Y V L Y Y
 



           
(8.84a)

 Normalizing the variables has made the boundary conditions identical.

1. The kinematic viscosity and thermal diffusivity are equal:

 The boundary layer equations (8.84) can then be made identical if 
which is possible under two conditions.=M H    

  ( 1)Pr   (8.86)
2. The eddy diffusivities are equal:
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 We can provide some justification for this assumption by arguing that 
the same turbulent mechanism—the motion and interaction of fluid 
particles—is responsible for both momentum and heat transfer.  
Reynolds made essentially the same argument, and so Equation (8.87) by 
itself is sometimes referred to as Reynolds’ analogy.

  ( 1)M H tPr   (8.87)

 The analogy is now complete, meaning that the normalized velocity and 
temperature profiles,                    and                   are equal.( , )V X Y( , )U X Y

Developing the Analogy

 Begin by writing the ratio of the apparent heat flux and shear stress 
(equations. 8.40 and 8.41),
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 
 

/ /

/ /
app p H

app M

q c T y

u y

  
   

   
 

   (8.88)

 Since the dimensionless velocity and temperature profiles are identical, 
their derivatives cancel.

M H   Imposing the two conditions              (8.86) and                   (8.87), 
substituting the dimensionless variables yields 

  /

/
app p s

app

q c T T Y

V U Y








   


  (8.89)

 Another important implication of (8.89) is that the ratio            
is constant throughout the boundary layer. This means we can represent 
this ratio by the same ratio at the wall.  Equation (8.89) then becomes

/app appq 

 p so

o

c T Tq

V







 can recast this into a more convenient form by substituting  
and                                into the above, and rearranging,20.5o fC V   o sq h T T

  

2
f

p

Ch

V c 


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 This is the Reynolds Analogy.

 The terms on the left side can also be written in terms of the Reynolds,
Nusselt and Prandtl numbers, 

( 1)
2
fx

x
x

CNu
St Pr

Re Pr
   (8.90)

 St is called the Stanton Number.
Note: The same analogy can also be derived for laminar flow over a 

flat plate (for Pr =1).

Limitations to the Reynolds Analogy

 It is limited to Pr = 1 fluids. 
o A reasonable approximation for many gases, but for most liquids 

the Prandtl numbers are much greater than unity—values of up 
to 700 are possible.

 Therefore the Reynolds analogy is not appropriate for liquids.
 Also doesn’t account for the varying intensity of molecular and turbulent 

diffusion in the boundary layer.  

(ii) Prandtl-Taylor Analogy
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 In independent works, Prandtl [9] and Taylor [10] modified the 
Reynolds analogy by dividing the boundary layer into two regions

Analogy for the Viscous Layer

 Define the viscous sublayer from y = 0 to y = y1

o a viscous sublayer where molecular effects dominate:

 Define the following normalized variables:

 and M H    
o a turbulent outer layer, where turbulent effects dominate:

 and M H    
o Notice that neither of these conditions restricts us to Pr = 1 fluids. 

 The boundary conditions for this region are

(0) 0,  (0) su T T 
1 1 1 1( ) ,  ( )u y u T y T 

1 1 1 1 1

,  ,  ,   and s

s

T Tu v x y
U V X Y

u u T T y y



    


 Then, for the viscous sublayer, the ratio of the apparent heat flux and 

apparent shear stress (Eqn. 8.86) leads to the following:
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Analogy for the Outer Layer

 The following normalized variables will make the analogy valid in this
region:

 The boundary conditions for this region are

1 1 1 1( ) ,  ( )u y u T y T 
( ) ,  ( )u y V T y T     

1 1 1

1 1 1

,  ,  ,   and 
u u v u T T x y

U V X Y
V u V u T T L L


  

  
    

  
 Then, for the outer region, the ratio of the apparent heat flux and 

apparent shear stress (equation 8.86) leads to

1 1
o

s
o p

q
T T Pru

c


  (8.93)

/ / constantapp app o oq q   Where we have again noted that                                       

M H  Closely resembles the Reynolds analogy, with                   but this time 
we assume that the turbulent effects outweigh the molecular effects,
equation (8.92).

 1 1
o

o p

q
T T V u

c 


   (8.94)
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 Adding (8.93) and (8.94) gives

 1 1 1o
s

o p

q u
T T V Pr

c V 


  
    

 

1u The velocity at the edge of the viscous sublayer,      , is still unknown 

   1

/ 2

1 1

fo

p s

Cq
St

uV c T T Pr
V

  




 

  

/app appq As before, the ratio                     is constant, so we have chosen the value at 
y = y1 (which, as we found for the viscous sublayer, can be represented by 

)./o oq 

 Substituting                            into the above yields21

2o fC V  

1u Estimate      using the universal velocity profile. Approximate the edge
of the viscous region 5u y  

 Then, from the definition of  u

1 2
5

f

u
u

V C




 
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 Thus, the Prandtl-Taylor analogy is

1 5
2
fCu

V

 (8.95)

 

/ 2

5 1 1
2

fx
x

x f

CNu
St

Re Pr C
Pr

 
 

  
  

(8.96)

(iii) von Kármán Analogy

 Theodore von Kármán extended the Reynolds analogy even further 
to include a third layer – a buffer layer – between the viscous 
sublayer and outer layer.  The result, developed in Appendix D, is

 

/ 2

5 1
1 5 1 ln

2 6

fx
x

x f

CNu
St

Re Pr C Pr
Pr

 
        

(8.97)

(iv) Colburn Analogy

 Colburn [24] proposed a purely empirical modification to the Reynolds 
analogy that accounts for fluids with varying Prandtl number.
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 He proposed the following correlation through an empirical fit of 
available experimental data:

2/3

2
f

x

C
St Pr  (8.98)

 The Colburn analogy is considered to yield acceptable results for 
(including the laminar flow regime) and Prandtl number 

ranging from about 0.5 to 60.

710xRe 

Example 8.3: Average Nusselt Number on a Flat Plate
Determine the average Nusselt number for heat transfer along a 
flat plate of length L with constant surface temperature. Use 
White’s model (8.75) for turbulent friction factor, and assume a 
laminar region exists along the initial portion of the plate.

(1) Observations. This is a mixed-flow type problem, with the initial 
portion of the plate experiencing laminar flow.

(2) Problem Definition. Determine an expression for the average 
Nusselt number for a flat plate of length L.

 The exponent (2/3) on the Prandtl number is entirely empirical, and 
does not contain any theoretical basis.
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(3) Solution Plan. Start with an expression for average heat transfer 
coefficient, equation (2.50), and split the integral up between laminar 
and turbulent regions.

(4) Plan Execution. 
(i) Assumptions. (1) Boundary layer assumptions apply, (2) mixed 

(laminar and turbulent) flow, (3) constant properties, (4) 
incompressible flow, (5) impermeable flat plate, (6) uniform surface 
temperature. (7) transition occurs at xc = 5*105. 

(ii) Analysis. 
 The average heat transfer coefficient is found from: 

0

1
( )

L

Lh h x dx
L

  (2.50)

 Splits this into laminar and turbulent regions: 

0

1
( ) ( )

c

c

x L

L lam turb
x

h h x dx h x dx
L

 
  

  
  (8.99)

From the definition of Nusselt number, we can write the above as: 

, ,
0

1 1c

c

x L
L

L x lam x turb
x

h L
Nu Nu dx Nu dx

k x x
    (a)
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 To find expressions for local Nusselt number, we will use the friction 
factors for laminar flow, and White’s model for turbulent flow (8.75),
and apply them to Colburn’s analogy (8.98).

Which yields

1/ 3 1/2
, 0.332x lam xNu Pr Re (b)

 The results are

1/3 6/7
, 0.0135x turb xNu Pr Re (c)

 Substituting these expressions into (a) gives:

   
1/2 6/7

1/ 3 1/3
1/7

0

0.332 0.0135
c

c

x L
L

L

x

h L V Vdx dx
Nu Pr Pr

k xx 
         

    

   1/ 3 1/2 1/3 6/7 6/77
0.664 0.0135

6c c
L x L xNu Pr Re Pr Re Re   (d)

 Finally, since Rexc = 5*105, (d) reduces to:

 6/7 1/30.0158 739L LNu Re Pr  (8.100)

(iii) Checking. The resulting Nusselt number correlation is 
dimensionless.
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6/7 1/30.0158L LNu Re Pr (8.101)

(5) Checking. If the laminar length had been neglected, the resulting 
correlation would be

This result also makes sense when examining the mixed-flow 
correlation (8.100).  If the plate is very long, such that the majority of 
the plate is in turbulent flow, the second term in the parentheses 
becomes negligible, leading to (8.101). 

8.5.2 Validity of Analogies
 Generally valid for slender bodies, where pressure gradient does not 

vary greatly from zero.

 Approximately valid for internal flows in circular pipes as well, 
although other analogies have been developed specifically for internal 
flow.

 Although they are derived assuming constant wall temperature, the 
above correlations work reasonably well even for constant heat flux. 

 To address property variation with temperature, evaluate properties 
at the film temperature: 

2
s

f

T T
T 

 (8.102)
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Effect of the Turbulent Prandtl Number

 Analogies also that Prt = 1. Valid? 

 Prt as high as 3 near wall, but 0.7–1 outside the viscous sublayer 
 Prt seems to be affected slightly by pressure gradient, though largely 

unaffected by surface roughness or the presence of boundary layer 
suction or blowing. 

 A value of Prt ≈ 0.85 is considered reasonable for most flows. 
This suggests that the analogies should be approximately valid for real 
flows.

Validity of the Colburn Analogy

 Arguably, the most popular analogy is that of Colburn.

 The analogy is as primitive as the Reynolds analogy, adds no new 
theoretical insight, and is in fact merely a curve-fit of experimental data.  

 Why has this method maintained its usefulness over the decades?
 Easy to use

 More advanced models are based on theoretical assumptions 
that are, at best, approximations.  
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o Prandtl-Taylor and von Kármán analogies assume that the viscous 
sublayer and conduction sublayer are the same thickness.

 Colburn analogy backed by experimental data over a range of conditions
and fluids.

 Empiricism is sometimes better than pure theoretical arguments; the 
test is the experimental data.

 Colburn analogy does have critics. Churchill and Zajic [29] 
demonstrated that that the Colburn analogy under-predicts the Nusselt
number by 30-40% for fluids with Prandtl numbers greater than 7.

 Despite their shortcomings, analogies are fairly straightforward, and 
facilitate the development of empirical correlations that are often 
reasonably accurate and easy to use.

 Numerical solutions, on the other hand, are still difficult to obtain and 
are limited in applicability.  

 For these reasons, heat and mass transfer analogies remain in 
widespread use, and new correlations are still being developed 
often based on this technique.

8.5.3 Universal Turbulent Temperature Profile
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 Begin with the turbulent energy equation, (8.39).

 The idea here is the same as we developed for the universal velocity 
profile: we can solve the above relation for the temperature profile.

(i) Near-Wall Profile

 This implies that the apparent heat flux is approximately constant with 
respect to y,

 Akin to the Couette flow assumption, we assume that, near the wall, 
the velocity component      ~ 0, as is the temperature gradient                . 
Thus the left-hand-side of (8.39) approaches zero. Then,

v /T x 

  0H

T

y y
 

  
   

Near the Wall:

  constantapp
H

p

q T

c y
 



 
  


 (8.103)

 First, recognize that, since                    is constant throughout this region,  
we can replace          with       . Then, substituting wall coordinates 

and      , (8.103) can be rearranged to

/app pq c
appq oq

u y
*

p

o H

c uT

y q

 
 


 

 
(8.104)

68

 Define a a temperature wall coordinate as,

 
*

p
s

o

c u
T T T

q

  


(8.105)

 Very close to the wall, we expect molecular effects to dominate the heat 
transfer; that is, H 

 Then (8.104) becomes,

H

T

y


 








 
(8.106)

 We can now integrate the above expression:

0

y

H

dy
T


 




 
 (8.107)

 We will divide the boundary layer into two regions in order to 
evaluate this expression.

(ii) Conduction Sublayer

 Invoking this approximation, (8.107) reduces to:
T Prdy Pry C    
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 The constant of integration, C, can be found by applying the boundary 
condition that                                . This condition yields C = 0, so the
temperature profile in the conduction sublayer is

( 0) 0T y   

 Rather than develop some new model for εH, we invoke the 
turbulent Prandtl number:

t
H

M

Pr





1,   ( )T Pry y y     (8.108)

 In the above,       is the dividing point between the conduction and outer
layers. 

1y


(iii) Fully Turbulent Region

 Outside the conduction-dominated region close to the wall, we expect 
that turbulent effects dominate: H 

1

1

y

Hy

T T dy







     (8.109)

 We already have a model for εM, and will assume a constant value for Prt

 Prandtl’s mixing length theory was

2 2
M

u
y

y
 




 (8.44)
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 In terms of wall coordinates, we can write (8.44) as

 Finally, if we assume Prt and κ are constants, then (8.110) becomes:

 The partial derivative                  can be found from the Law of the Wall, 
Equation (8.58). Substituting the above and (8.58) into (8.109), 
we obtain

/u y  

1

y

y

Pr
T dy

y





 
  (8.111)

 22
M

u
y

y
  









 (8.110)

1
1

ln ,      ( )tPr y
T y y

y


  



 
  

 
(8.112)

 Kays et al. [30] assumed Prt = 0.85 and κ = 0.41, but found that 
the thickness of the conduction sublayer (    ) varies by fluid.1y



 White [14] reports a correlation that can be used for any fluid with 
: 0.7Pr 

2/3ln 13 7tPr
T y Pr


    (8.113)

 Prt is assumed to be approximately 0.9 or 1.0.
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(iv) A 1/7th Law for Temperature
 As with the velocity profile, a simpler 1/7th power law relation is

sometimes used for the temperature profile: 
1/7

s

s

T T y

T T 

      
(8.114)

8.5.4 Algebraic Method for Heat Transfer Coefficient
 The existence of a universal temperature and velocity profile makes 

for a fairly simple, algebraic method to estimate the heat transfer.
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 Begin with the definition of the Nusselt number, which can be expressed 
using Newton’s law of cooling as:  

 
o

x
s

q xhx
Nu

k k T T


 


(8.115)

 Invoke the universal temperature profile, T+: Using the definition of T+,
equation 8.105, we can define the free stream temperature as follows, 

   
* / 2p fp

s s

o o

c V Cc u
T T T T T

q q

 
     

 
(8.116)

 Substituting this expression into (8.115) for (Ts –T∞) and rearranging,

/ 2p f

x

c V C x
Nu

kT

 






 Then, multiplying the numerator and denominator by ν,

/ 2x f

x

Re Pr C
Nu

T 


 (8.117)

 We can now use the universal temperature profile, Eqn. (8.113), 
to evaluate        ,T 


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2/3ln 13 7tPr
T y Pr


 

    (8.118)

  2/3

/ 2

13 7

x f

x

t

Re Pr C
Nu

Pr u B Pr



  

 In the free stream, we can evaluate (8.58) as

 A precise value for         is not easy to determine. However, we can make a
clever substitution using the Law of the Wall velocity profile, Eqn. (8.58).

y 


1
lnu y B


 

   (8.119)

 Substituting (8.119) into (8.118) for            , the Nusselt number relation 
then becomes

ln y 


 We can simplify this expression further.  Using the definition of 
Stanton number,                                 ,selecting B = 5.0 and Prt = 0.9, and 
noting that the definition of        leads to                      , we can 
rearrange the relation above to arrive at the final result:

 /x x xSt Nu Re Pr
u

2 / fu C
 

 2/3

/ 2

0.9 13 0.88 / 2
f

x

f

C
St

Pr C


 
(8.120)

 Note the similarity to the more advanced momentum-heat transfer 
analogies of Prandtl and Taylor (8.96) and von Kármán (8.97).
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 One use for the universal temperature profile is to model the heat 
transfer using the integral energy equation.

8.5.5 Integral Methods for Heat Transfer Coefficient

 Consider turbulent flow over a flat plate, where a portion of the leading
surface is unheated

 Can assume a 1/7th power law profile for both the velocity and 
temperature (equations 8.65 and 8.114), and substitute them into the 
Energy Integral Equation

 Even with the simplest of assumed profiles, the development is 
mathematically cumbersome.

 A detailed development appears in Appendix E; the result of the analysis 
is: 
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 Applies to turbulent flow over a flat plate with unheated starting length 
xo.

 The model has been used to approximate heat transfer for other fluids as 
follows.  Equation (8.121) can be expressed as

1/99/10

1
2
fx o

x
x

CNu x
St

Re Pr x

      
   

(8.121)

 Note that (8.121) reduces to the Reynolds analogy when xo = 0.  This is 
because the Prandtl number was assumed to be 1 as part of the derivation.

 
0

1/99/10
1 /

ox

x

o

Nu
Nu

x x


  

(8.122)

 In this form, other models for heat transfer, like von Kármán’s analogy, 
could be used to approximate              for Pr ≠ 1 fluids.0ox

Nu 

8.5.6 Effect of Surface Roughness on Heat Transfer

 We would expect roughness to increase the heat transfer, like it did for
the friction factor.

 However, the mechanisms for momentum and heat transfer are different. 
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 As roughness increases, the viscous sublayer diminishes, to such an 
extent that for a fully rough surface the viscous sublayer disappears 
altogether.

 Heat transfer, on the other hand, relies on molecular conduction at the 
surface, no matter how rough the surface, or how turbulent the flow.

o The turbulent fluid elements are exchanging momentum with surface 
directly (like profile or pressure drag), and the role of molecular 
diffusion (i.e., skin friction) is diminished.

 Bottom line: we can not expect roughness to improve heat transfer as 
much as it increases friction.  

o There is no “pressure drag” equivalent in heat transfer.

o Moreover, fluid in the spaces between roughness elements is largely
stagnant, and transfers heat entirely by molecular conduction.

o The conduction sublayer, then, can be viewed as the average height 
of the roughness elements.

o The stagnant regions between roughness elements effectively create 
a resistance to heat transfer, and is the major source of resistance
to heat transfer [27].
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 This is also means that we can not predict the heat transfer by simply 
using a friction factor for rough plates along with one of the 
momentum-heat transfer analogies. 

 The roughness size k

 The Prandtl number

o Expect that roughness size has no influence until it extends beyond 
the viscous and conduction sublayers.

o Its influence reaches a maximum beyond some roughness size 
(the fully rough limit).

o Since molecular conduction is important.

o Fluids with higher Prandtl number (lower conductivity) would be 
affected more by roughness.  Why?  The lower-conductivity fluid 
trapped between the roughness elements will have a higher resistance 
to heat transfer.  Also, the conduction sublayer is shorter for these 
fluids, so roughness elements penetrate relatively further into the 
thermal boundary layer.

What Influences Heat Transfer on a Rough Plate?

o In contrast, for a liquid metal, the conduction sublayer may fully 
engulf the roughness elements, virtually eliminating their influence 
on the heat transfer.
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 Kays et al. [30] develop a correlation for rough plate, which is equivalent 
to

 Bogard et al. [31] showed that this model compared well with 
experimental data from roughened turbine blades.
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10.2 0.44 / 2

2
f

t s f
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St Pr C k Pr C


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(8.123)

 where                         is based on the equivalent sand-grain roughness ks
and C is a constant that depends on roughness geometry.

* /s sk k u  

o Showed a 50% increase in heat transfer over smooth plates.
o Demonstrated that increasing roughness beyond some value showed 

little increase in the heat transfer.


