به نام ایرد دانا

(کاربرگ طرح درس)

نيمسال اول سال تحصيلي ١٤٠٤

دانگده مندی محانیک

■ دکتری ■	رشناسی□ کارشناسی ارشد	مقطع: كار	تعداد واحد: نظری ۳		ن: انتقال حرارت	فارسى	نام
					ئاي <i>ى</i>	جابج	در <i>س</i>
			و همنیازها: –	پیشنیازها	Convection :	لاتين	ورس
					Heat Tran	sfer	
	315	: 532352	شماره تلفن اتاق		محمدصادق ولی پور	رسين:	مدرس/مد
منزلگاه اینترنتی:	: منزلگاه اینترنتی:				رونیکی	پست الكتر	
http://msvalipour.profile.semnan.ac.ir/#about_me valipourcourse@							
	۱۸:۰۰–۱۸:۰۰ کلاس ۲۰۳						
ىبە <i>ى</i> توان پمپاژ در	س با آن و به طبع ان محاس	امد در تمار	سیال و سطح ج				
	، آرام و آشفته خارجی و داخلی						
تقال حرارت در	۱– محاسبه ضریب انتقال حرارت جابجایی بین جریان سیال و سطح جامد در تماس با آن و به طبع آن نرخ انتقال حرارت در						
	انهای اجباری و طبیعی آرام و آشفته خارجی و درونی						
					مورد نیاز: کلاس– تخته ب		
امتحان پایان ترم		اول	امتحان میان ترم		فعالیتهای کلاسی و آموزش		-
50	20		20	15 درصد شامل تمرین و پروژه		٥	درصد نمر
1. Latif M.	Jiji, "Heat Conve	ection"	, Springer	-Verlag	, Netherlands,		
2 nd Editio	on. 2009.					ر	منابع اصلح
	,						
2. A. Bejan,	, "Convection H	eat Tra	ansfer" Jo	hn Wil	ey & Sons, 2 nd		
Edition 1	Edition, 1995. John Wiley & Sons.						
Larcion, .	1999. John Whe	y & 301					
1. WM Kays and ME Crawford "Convective Heat and Mass				ن	منابع فرعي		
Transfer", 3 rd Edition, 1993, Singapore, MacGrawHill.							
2. LC Burmeister, "Convective Heat Transfer", 3 rd Edition, John							
Wiley & Sons, NewYork, 1993.							

No.	Title	Events
	CHAPTER 1: BASIC CONCEPTS	
	Convection Heat Transfer ,	
	Important Factors in Convection Heat Transfer,	
	Focal Point in Convection Heat Transfer,	First
1	The Continuum and Thermodynamic Equilibrium Concepts,	Session
	Fourier's Law of Conduction,	
	Newton's Law of Cooling,	
	The Heat Transfer Coefficient h,	
	Problem Solving Format	
	CHAPTER 2: DIFFERENTIAL FORMULATION OF THE	
	BASIC LAWS	
	Forced & Free Convection	
	Laminar vs. Turbulent Flow	
	Conservation of Mass: The Continuity Equation	
2	Conservation of Momentum: The N-S Equations of Motion	
2	Conservation of Energy: The Energy Equation	
	The Boussinesq Approximation	
	Boundary Conditions	
	Nondimensional Form of the Governing Equations Dynamic and Thermal Similarity Parameters	
	Heat Transfer Coefficient: The Nusselt Number	
	Scale Analysis	
	CHAPTER 3: EXACT ONE-DIMENSIONAL SOLUTIONS	
	Simplification of the Governing Equations	
3	Exact Solutions	
	Couette Flow	
	Poiseuille Flow	
	Rotating Flow	
	Couette Flow Poiseuille Flow	

	CHAPTER 4: BOUNDARY LAYER FLOW:	
4	APPLICATION TO EXTERNAL FLOW	
	The Boundary Layer Concept	
	Qualitative Description	
	The Governing Equations	
	Mathematical Simplification	
	Simplification of the Momentum Equations	
	Simplification of the Energy Equation	
	Laminar Boundary Layer Flow over Semi infinite Flat Plate: Uniform Surface Temperature	
	Blasius Solution, Pohlhausen's Solution, and Scaling	
	Laminar Boundary Layer Flow over Semi infinite Flat	
	Plate: Variable Surface Temperature	
	Laminar Boundary Layer Flow over a Wedge:Uniform Surface Temperature	
	CHAPTER 5: APPROXIMATE SOLUTIONS: THE	
	INTEGRAL METHOD	
	Differential vs. Integral Formulation	
	Integral Method Approximation: Mathematical Simplification	
	Accuracy of the Integral Method	
5	Integral Formulation of the Basic Laws	
	Conservation of Mass	
	Conservation of Momentum	
	Conservation of Energy	
	Integral Solutions	
	Flow Field and Temperature over a Semi infinite Plate	
	CHAPTER 6: HEAT TRANSFER IN CHANNEL FLOW	
6	Hydrodynamic and Thermal Regions: General Features Flow and Temperature Field	

Hydrodynamic and Thermal Entrance Lengths Scale Analysis Analytic and Numerical Solutions: Laminar Flow Channels with Uniform Surface Heat Flux Channels with Uniform Surface **Temperature** Determination of Heat Transfer Coefficient h(x) and Nusselt Number Nu **Basic Considerations for the Analytical Determination of Heat Flux, Heat Transfer Coefficient and Nusselt** Number **Heat Transfer Coefficient in the Fully Developed Temperature** Region **Definition of Fully Developed Temperature Profile Heat Transfer Coefficient and Nusselt Number Fully Developed Region for Tubes at Uniform Surface Flux Fully Developed Region for Tubes at Uniform Surface Temperature Laminar Flow Through Tubes with Uniform Surface Temperature: Graetz Solution Laminar Flow Through Tubes With Uniform Surface Heat Flux CHAPTER 7: FREE CONVECTION** Features and Parameters of Free Convection **Governing Equations Boundary Conditions** Laminar Free Convection over a Vertical Plate: Uniform Surface **Temperature** 7 **Governing Equations Boundary Conditions Similarity Transformation Heat Transfer Coefficient and Nusselt Number** Laminar Free Convection over a Vertical Plate: Uniform Surface **Heat Flux**

	Inclined Plates
	Integral Method
	Integral Formulation of Conservation of Momentum Integral
	Formulation of Conservation of Energy
	Integral Solution
	Comparison with Exact Solution for Nusselt Number
	CHAPTET 8: CONVECTION IN EXTERNAL TURBULENT
	FLOW
	Examples of Turbulent Flows
	The Reynolds Number and the Onset of Turbulence
	Eddies and Vorticity
	Scales of Turbulence
	Characteristics of Turbulence
	Analytical Approach
	Conservation Equations for Turbulent Flow
	Reynolds Decomposition
0	Conservation of Mass
8	Momentum Equations
	Energy Equation
	Summary of Governing Equations for TurbulentFlow
	Analysis of External Turbulent Flow
	Turbulent Boundary Layer Equations
	Reynolds Stress and Heat Flux
	The Closure Problem of Turbulence
	Eddy Diffusivity
	Momentum Transfer in External Turbulent Flow
	Modeling Eddy Diffusivity: Prandtl's Mixing Length Theory
	Universal Turbulent Velocity Profile

Approximate Solution for Momentum Transfer: Momentum Integral Method

Effect of Surface Roughness on Friction Factor

Energy Transfer in External Turbulent Flow

Momentum and Heat Transfer Analogies

Validity of Analogies

Universal Turbulent Temperature Profile

Algebraic Method for Heat Transfer Coefficient

Integral Method for Heat Transfer Coefficient

Effect of Surface roughness on Heat Transfer

CHAPTERE 9: CONVECTION IN TURBULENT CHANNEL FLOW

Entry Length

Governing Equations

Conservation Equations

Apparent Shear Stress and Heat Transfer

Mean Velocity and Temperature

Universal Velocity Profile

Results from Flat Plate Flow

Development in Cylindrical Coordinates

Velocity Profile for the Entire Pipe

Friction Factor for Pipe Flow

Blasius Correlation for Smooth Pipe

The 1/7th Power Law Velocity Profile

Prandtl's Law for Smooth Pipe

Effect of Surface Roughness

Momentum Heat Transfer Analogies

Reynolds Analogy for Pipe Flow

9

Adapting FlatPlate Analogies to Pipe Flow

Other AnalogyBased Correlations

Algebraic Method Using Universal Temperature Profile

Other Correlations for Smooth Pipe

Heat Transfer in Rough Pipes

نحوه ارزشیابی:

توضيحات	نمره از	عنوان
	١٠٠	
- بعد از تحویل تمرینها به فاصله حداکثر یک هفته بایستی پاسخها	۱۵	تمرین و آزمونک و
تحویل شود.		پروژه درسی
در انتهای فصل ۴ (بر اساس کتاب جی جی)گرفته می	۲٠	آزمون میانترم ۱
شود(۱۴۰۴/۰۷/۲۹ ساعت ۸:۰۰ الی ۱۰:۰۰)		
در انتهای فصل ۶ گرفته می شود(۱۴۰۴/۰۹/۱۸ ساعت ۸:۰۰ الی	۲٠	آزمون میانترم ۲
(1 · : · ·		
۱۴۰۴/۱۰/۳۰ ساعت ۱۰:۰۰	۵۰	آزمون نهایی

مقررات كلاس:

- ۱- حضور به موقع در کلاس قبل از ورود استاد.
 - ۲- توصیه می شود حتماً جزوه بنویسید.
- ۳- حضور منظم در کلاس توصیه می شود. حضور و غیاب دارای تاثیر مثبت می باشد.